Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Zaitsev, Andrei Yurevich

Statistics Math-Net.Ru
in MathSciNet: 96 (93)
in zbMATH: 83 (81)
in Web of Science: 37 (36)
in Scopus: 58 (56)
Zaitsev, Andrei Yurevich
Senior Researcher
Doctor of physico-mathematical sciences (1989)
Speciality: 01.01.05 (Probability theory and mathematical statistics)
Birth date: 15.09.1956
E-mail:
Keywords: invariance principle, strong approximation, sums of independent random vectors, infinitely divisible and compound Poisson approximation, estimation of the rate of approximation, Central Limit Theorem, concentration functions, inequalities.
UDC: 519.21, 519.2

Subject:

At the beginning of his scientific career A.Yu. Zaitsev worked on solving a problem posed in the mid 50s by A.N. Kolmogorov. He managed to get the correct order of the accuracy of infinitely divisible approximation of distributions of sums of independent random variables, the distribution of which are concentrated on the short intervals of length $ \tau $ to within a small probability $ p $. It was found that the accuracy of approximation in the Lévy metric has order $ p + \tau \log ( 1 / \tau) $, which is much more precise than the initial result of Kolmogorov $ p ^ { 1/5 } + \tau ^ { 1/2 } \log ^{1/4}( 1 / \tau) $, and also of the latest results obtained by other authors. As approximating, the so-called accompanying infinitely divisible compound Poisson distributions were used. Moreover, as was shown by T. Arak, the estimates are correct in order. In 1986, a joint monograph by T. Arak and A.Yu. Zaitsev, containing a summary of these results, was published. Later A.Yu. Zaitsev (1989) showed that a similar estimate holds in the multidimensional case, and an absolute constant factor is replaced a $ c (d) $, depending only on the dimension $ d $. While proving it was found that for $ p = 0 $ (i.e., when the norms of the terms are bounded by a constant $ \tau $ with probability one) then for any $ \lambda> 0 $ a random vector $ X $, having the same distribution as this sum, may be constructed on the same probability space with the corresponding Gaussian vector $ Y $, so that $ {\mathbf P} (\| X - Y \|> \lambda) \le c_1 (d) \exp (- \lambda / c_2 (d) \tau) $. Moreover, A.Yu. Zaitsev (1986) proved that the same result holds for vectors with distributions from a certain class $ A_d (\tau) $ of distributions with sufficiently slowly growing cumulants containing, in particular, arbitrary infinitely divisible distributions with spectral measures concentrated on the ball of radius $ c\tau $ centered at the origin. Another important special case of estimating the accuracy of infinitely divisible approximation is obtained for $ \tau = 0 $, the right-hand side of the estimate of Kolmogorovs uniform distance between distribution functions $ \rho (\, \cdot \,, \, \cdot \,) $ has the form $ c (d) p $. In a paper published in 2003 in Zapiski nauchnyh seminarov POMI, this result is interpreted as a general estimate for the accuracy of approximation of the sample composed of non-i.i.d. rare events by a Poisson point process.

In other papers, some optimal bounds for the Kolmogorov distance were also obtained in the general case. In particular, in the one-dimensional case, it succeeded to obtain the statements of results which imply simultaneously as (optimal in order) estimates for the rate of approximation of convolutions by accompanying infinitely divisible compound Poisson distributions, and rather general bounds in the CLT. Since tails of distributions of summands are arbitrary, the results cover the popular in the recent time case of the so called heavy tails of distributions of summands.

Similar methods were also used to obtain the following paradoxical result. There exists depending only on the dimension $ d $ value $ c (d) $, such that for any symmetric distribution $ F $ and any natural $ n $ uniform distance between the degrees in the convolution sense $ F ^ n $ admits the estimates $ \rho (F ^ n, F ^ {n +1}) \le c (d) n ^ {-1 / 2} $ and $ \rho (F ^ n, F ^ {n +2}) \le c (d) n ^ {-1 } $, and both estimates are unimprovable in order.

In recent joint papers, most of the results mentioned above have been carried over to the values of distributions in Hilbert space on convex polyhedra. In this case, the constants depend only on the number of half-spaces involved in the definition of the polyhedron.

In a recent paper, the following general related result was obtained. Denote $ \rho_{\mathcal{C}_d}(F,G) = \sup_A |F\{A\} - G\{A\}| $, where the supremum is taken over all convex subsets of $\mathbb R^d$. For any nontrivial distribution $F$ there is $c_1(F)$ such that $$ \rho_{\mathcal{C}_d}(F^n, F^{n+1})\leq \frac{c_1(F)}{\sqrt n} $$ for any natural $n$. The distribution $F$ is called trivial if it is concentrated on a hyperplane that does not contain the origin. Clearly, for such $F$ $ \rho_{\mathcal{C}_d}(F^n, F^{n+1}) = 1 $. A similar result for the Prokhorov distance is also obtained. For any $d$-dimensional distribution $F$ there is a $c_2(F)>0$ that depends only on $F$ and such that $$ (F^n)\{A\}\le (F^{n+1})\{A^{c_2(F)}\}+\frac{c_2(F)}{\sqrt{n}}\text{ and } (F^{n+1})\{A\}\leq (F^n)\{A^{c_2(F)}\}+\frac{c_2(F)} {\sqrt{n}} $$ for any Borel set $ A $ and for all positive integers $n$. Here $A^{\varepsilon }$ is the $ \varepsilon $-neighborhood of a set $ A $.

Using the Strassen-Dudley theorem, one can derive the following statement.

For any distribution $F\in\mathfrak F_d$ there is a value $c_3(F)$, depending only on $F$ and such that for any natural $n$ one can construct on the same probability space random vectors $\xi_n $ and $\eta_n $ with $\mathcal{L}(\xi_n )=F^{n+1}$ and $\mathcal{L}(\eta_n )=F^n$, so that $$\mathbf{P}\left\{ \Vert \xi_n -\eta_n \Vert >c_3(F) \right\} \le \frac{c_3(F)}{\sqrt{n}}. $$

Hence, the following bound for the Prokhorov distance holds: $\pi(\mathcal{L}(\xi_n/\sqrt{n} ), \mathcal{L}(\eta_n/\sqrt{n} ))\leqslant {c_3(F)}/{\sqrt{n}}$.

A negative answer was also given to the question A.N. Kolmogorov and Yu.V. Prokhorov about a possibility of infinitely divisible approximation of distributions of sums of independent identically distributed random variables in the sense of the distance in variation. A one-dimensional probability distribution was constructed, such that all its $ n $-fold convolutions are uniformly separated from the set of infinitely divisible laws in the sense of the distance in variation up to the distance $ 1 / 14$.

The most significant result obtained in the 90s is a multi-dimensional version of the classic one-dimensional result of Komlós, Major and Tusnády (1975) about the strong Gaussian approximation of sums of independent identically distributed random variables under the existence of exponential moments of terms. The dependence of the constants on the dimension and distribution of summands is indicated explicitly. Thus, the problem, standing more than 20 years was solved. Later, the result was generalized to the case of non-identically distributed summands and a full one-dimensional multivariate analogue of a result of A.I. Sakhanenko (1984) was obtained. These results were presented in an invited talk at the International Congress of Mathematicians in Beijing (2002). Relatively recently, estimates of strong Gaussian approximation of sums of independent $ d $-dimensional random vectors $ X_j $ with finite moments of the form $ {\mathbf E} H (\| X_j \|) $, where $ H $ is a monotone function growing no slower than $ x ^ 2 $ and not faster than $ \exp (cx) $, were obtained. These results may be considered as multidimensional generalizations and improvements of the corresponding results of Komlós, Major and Tusnády (1975), Sakhanenko (1985) and U. Einmahl (1989). In the special case, where $ H (x) = x ^ \gamma $, $ \gamma> 2 $, in a joint paper with F. Götze, estimates of optimal order were obtained for identically distributed random vectors. In 2011, in a joint paper the infinite-dimensional case was considered too.

In a paper of A.Yu. Zaitsev (1994), for any $ \varepsilon> 0 $ some pairs of bivariate distributions were constructed such that the distance in variation between their projections on an arbitrary one-dimensional direction does not exceed $ \varepsilon $, even though the distance $\rho$ between the two-dimensional distribution function is $ 1 / 2 $.

In 2003–2005 A.Yu. Zaitsev obtained new estimates of strong approximation of the $ L_1 $-norm of centered and normalized kernel density estimators. It was assumed that the kernel is bounded and has a bounded support. The different natural classes of densities with restrictions on the smoothness, growth, decay, and support size were considered. Estimates for the Prokhorov distance and for the size of zones, where the normal approximation is valid for large deviations, were also obtained. In a joint work with E. Giné and D.M. Mason (2003), the Central Limit Theorem for the $ L_1 $-norm of centered and normalized kernel density estimators of an arbitrary density was transferred to processes indexed by kernels.

Assuming that i.i.d. multidimensional random terms have zero expectations and finite moments of the fourth order, A.Yu. Zaitsev (2010, 2014 together with F. Götze) showed that, for sets bounded by surfaces of the second order, the accuracy of approximation by short asymptotic expansions in the Central Limit Theorem is of the order $ O ( 1 / N) $, where $ N $ is the number of summands, provided that the dimension is not less than five. Earlier, similar statements were obtained in 1997 in a paper by F. Götze and V. Bentkus provided that the dimension of not less than nine. In the joint paper of F. Götze and A.Yu. Zaitsev, nine is replaced by five, and a further reduction of dimension is impossible. There were also obtained new explicit expressions for the simple power dependence of the corresponding constants of the fourth moments and the eigenvalues ​​of the covariance operator of summands. Estimates are uniform with respect to isometric operators involved in the definition of surfaces.

In recent years, several joint papers of A.Yu. Zaitsev were published about estimating the concentration functions of distributions of sums of independent random variables.

Biography

A.Yu. Zaitsev is a specialist in the field of probability theory and mathematical statistics, the author of more than 100 publications, including a monograph. His main results are related to the study of sums of independent variables.

In September 1973 A.Yu. Zaitsev entered the Mathematics and Mechanics Faculty of the Leningrad State University. In June 1978 he graduated in mathematics. In August 1978 was hired by the Leningrad branch of the Steklov Mathematical Institute of the USSR Academy in the laboratory of statistical methods. In January 1981 he defended his candidate thesis on "Approximation of distributions of sums of independent random vectors infinitely divisible distributions" under the direction of I.A. Ibragimov. In January 1989 he defended his doctoral thesis on "Uniform limit theorems for sums of independent random vectors." In December 1992, A.Yu. Zaitsev was elected to the position of leading scientific researcher of PDMI RAS. From March 2001 to March 2006 he worked as a scientific secretary of PDMI. Since March 2006 he is again leading researcher PDMI. From January 2005 to June 2006 and from January 2010 to the present time A.Yu. Zaitsev is working as a professor of the chair of probability theory and mathematical statistics at the St. Petersburg State University.

A.Yu. Zaitsev is a member of the specialized council D 002.202.01 for doctoral dissertations, a member of the editorial boards of "Journal of Statistical Planning and Inference", "European Journal of Mathematics" and "Notes of scientific seminars PDMI".

In 2009 A.Yu. Zaitsev was awarded by the A.A. Markov Prize of RAS for a collection of works "Estimates for the accuracy of approximation of distributions of sums of independent variables".

   
Main publications:
  1. T. V. Arak, A. Yu. Zaitsev, “Uniform limit theorems for sums of independent random variables”, Proc. Steklov Inst. Math., 174 (1988), 1–222
  2. A. Yu. Zaitsev, “The accuracy of strong Gaussian approximation for sums of independent random vectors”, Russian Math. Surveys, 68:4 (2013), 721–761
  3. A. Yu. Zaitsev, “Multidimensional version of a result of Sakhanenko in the invariance principle for vectors with finite exponential moments. I, II, III”, Theory Probab. Appl., 45:4 (2001), 624–641; 46:3 (2002), 490–514; 46:4 (2002), 676–698
  4. F. Götze, A. Yu. Zaitsev, “On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem”, Theory Probab. Appl., 67:1 (2022), 1–16
  5. A. Yu. Zaitsev, “An example of a distribution whose set of $n$-fold convolutions is uniformly separated from the set of infinitely divisible laws in the sense of the variation distance”, Theory Probab. Appl., 36:2 (1991), 419–425

https://www.mathnet.ru/eng/person28702
https://scholar.google.com/citations?user=aPTFrasAAAAJ&hl=en
https://zbmath.org/authors/ai:zaitsev.andrei-yu
https://mathscinet.ams.org/mathscinet/MRAuthorID/197159
https://elibrary.ru/author_items.asp?spin=6012-0274
ISTINA https://istina.msu.ru/workers/65004652
https://orcid.org/0000-0002-4146-7323
https://www.webofscience.com/wos/author/record/K-7018-2013
https://www.scopus.com/authid/detail.url?authorId=7201772270
https://www.researchgate.net/profile/Andrei_Zaitsev2
https://arxiv.org/a/zaitsev_a_1

List of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)

   2024
1. A. Yu. Zaitsev, “On the proximity of distributions of successive sums in the Prokhorov distance”, Theory Probab. Appl., 69:2 (2024), 217–226  mathnet  crossref  crossref  scopus

   2023
2. A. Yu. Zaitsev, “Estimates of stability with respect to the number of summands for distributions of successive sums of i.i.d. vectors”, Probability and statistics. Part 34, Zap. Nauchn. Sem. POMI, 525, POMI, St. Petersburg, 2023, 86–95  mathnet
3. Veroyatnost i statistika. 34, Posvyaschaetsya yubileyu Andreya Nikolaevicha BORODINA, Zap. nauchn. sem. POMI, 525, ed. A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2023 , 189 pp.  mathnet
4. Veroyatnost i statistika. 35, Posvyaschaetsya yubileyu Yany Isaevny BELOPOLSKOI, Zap. nauchn. sem. POMI, 526, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2023 , 211 pp.  mathnet
5. I. A. Ibragimov, A. Yu. Zaitsev, D. N. Zaporozhets, M. A. Lifshits, “To the 70th anniversary of A. N. BORODIN”, Probability and statistics. Part 34, Zap. Nauchn. Sem. POMI, 525, POMI, St. Petersburg, 2023, 5–6  mathnet

   2022
6. F. Gettse, A. Yu. Zaitsev, “Ob alternativnykh approksimiruyuschikh raspredeleniyakh v mnogomernom variante vtoroi ravnomernoi predelnoi teoremy Kolmogorova”, Teoriya veroyatn. i ee primen., 67:1 (2022), 3–22 , arXiv: 2006.01942  mathnet  crossref  mathscinet  zmath  elib 2
7. Friedrich Götze, Andrei Yu. Zaitsev, “A new bound in the Littlewood–Offord problem”, This article belongs to the Special Issue Limit Theorems of Probability Theory, Mathematics, 10:10 (2022), 1740 , 6 pp., arXiv: 2112.12574  crossref  isi  scopus 1
8. Ya. S. Golikova, A. Yu. Zaitsev, “On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions”, Probability and statistics. Part 33, Zap. Nauchn. Sem. POMI, 515, POMI, St. Petersburg, 2022, 83–90  mathnet
9. Veroyatnost i statistika. 32, Posvyaschaetsya yubileyu Ildara Abdullovicha IBRAGIMOVA, Zap. nauchn. sem. POMI, 510, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2022 , 287 pp.  mathnet
10. Veroyatnost i statistika. 33, Zap. nauchn. sem. POMI, 515, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2022 , 238 pp.  mathnet

   2023
11. F. Götze, A. Yu. Zaitsev, “Convergence to infinite-dimensional compound Poisson distributions on convex polyhedra”, J. Math. Sci. (N. Y.), 273:5 (2023), 732–737 , arXiv: 2109.11845  mathnet  crossref  mathscinet  zmath  adsnasa  elib

   2021
12. Veroyatnost i statistika. 30, Zap. nauchn. sem. POMI, 501, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2021 , 343 pp.  mathnet
13. Veroyatnost i statistika. 31, Zap. nauchn. sem. POMI, 505, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2021 , 330 pp.  mathnet

   2020
14. Veroyatnost i statistika. 29, Zap. nauchn. sem. POMI, 495, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2020 , 322 pp.  mathnet
15. A. N. Borodin, A. Yu. Zaitsev, I. A. Ibragimov, M. A. Lifshits, V. N. Solev, “In memory of M. S. Nikulin”, Probability and statistics. Part 29, Zap. Nauchn. Sem. POMI, 495, POMI, St. Petersburg, 2020, 7–8  mathnet

   2019
16. A. Yu. Zaitsev, A. M. Kagan, Ya. Yu. Nikitin, “Toward the History of the St. Petersburg School of Probability and Statistics. IV. Characterization of Distributions and Limit Theorems in Statistics”, Vestnik St Petersburg University: Mathematics, 52:1 (2019), 36–53  crossref  mathscinet  zmath  zmath  isi  elib  elib  scopus

   2021
17. F. Götze, A. Yu. Zaitsev & D. Zaporozhets, “An Improved Multivariate Version of Kolmogorov’s Second Uniform Limit Theorem”, J. Math. Sci. (N. Y.), 258 (2021), 782–792 , arXiv: 1912.13296  mathnet  crossref  mathscinet  zmath  elib  scopus

   2019
18. Veroyatnost i statistika. 28, Zap. nauchn. sem. POMI, 486, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2019 , 309 pp.  mathnet

   2018
19. F. Götze, A. Yu. Zaitsev, “New applications of Araks inequalities to the Littlewood–Offord problem”, European Journal of Mathematics, 4:2 (2018), 10.1007/s40879-018-0215-3 , 25 pp. http://rdcu.be/Gb4B, arXiv: 1611.00831  crossref  mathscinet  zmath  isi  scopus 2
20. M. A. Lifshits, Y. Y. Nikitin, V. V. Petrov, A. Y. Zaitsev, A. A. Zinger,, “Toward the History of the Saint Petersburg School of Probability and Statistics. I. Limit Theorems for Sums of Independent Random Variables”, Vestnik St. Petersburg University: Mathematics, 51:2 (2018), 144–163  crossref  crossref  mathscinet  mathscinet  zmath  isi  elib  scopus

   2020
21. F. Götze, A. Yu. Zaitsev, “Estimates for Closeness of Convolutions of Probability Distributions on Convex Polyhedra”, J. Math. Sci. (N. Y.), 251 (2020), 67–73 , arXiv: 1812.07473  mathnet  crossref  mathscinet  zmath  adsnasa  scopus

   2018
22. Veroyatnost i statistika. 27, Zap. nauchn. sem. POMI, 474, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2018 , 247 pp.  mathnet
23. F. Götze, Yu. S. Eliseeva, A. Yu. Zaitsev, “Arak inequalities for concentration functions and the Littlewood–Offord problem”, Theory Probab. Appl., 62:2 (2018), 196–215 , arXiv: 1506.09034  mathnet  crossref  crossref  mathscinet  isi  elib  scopus

   2020
24. F. Götze, A. Yu. Zaitsev, “Rare Events and Poisson Point Processes”, J. Math. Sci. (N. Y.), 244 (2020), 771–778 , arXiv: 1802.06638  mathnet  crossref  mathscinet  zmath  scopus

   2017
25. Veroyatnost i statistika. 25, Posvyaschaetsya pamyati Vladimira Nikolaevicha SUDAKOVA, Zap. nauchn. sem. POMI, 457, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2017 , 322 pp.  mathnet
26. Veroyatnost i statistika. 26, Zap. nauchn. sem. POMI, 466, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2017 , 338 pp.  mathnet

   2016
27. F. Götze, Yu. S. Eliseeva, A. Yu. Zaitsev, “Arak’s inequalities for concentration functions and the Littlewood–Offord problem”, Doklady Mathematics, 93:2 (2016), 202–206 , arXiv: 1512.02938  crossref  crossref  mathscinet  zmath  isi  elib  scopus

   2018
28. A. Yu. Zaitsev, “Araks inequalities for the generalized arithmetic progressions”, J. Math. Sci. (N. Y.), 220:6 (2018), 698–701 http://rdcu.be/HuDm  mathnet  crossref  mathscinet  zmath  zmath  elib  scopus

   2016
29. Veroyatnost i statistika. 24, Zap. nauchn. sem. POMI, 454, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2016 , 315 pp.  mathnet
30. A. Yu. Zaitsev, “A bound for the maximal probability in the Littlewood–Offord problem”, J. Math. Sci. (N. Y.), 219:5 (2016), 743–746  mathnet  crossref  mathscinet  zmath  elib  scopus

   2015
31. Veroyatnost i statistika. 22, Zap. nauchn. sem. POMI, 441, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2015 , 324 pp.  mathnet
32. Veroyatnost i statistika. 23, Zap. nauchn. sem. POMI, 442, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2015 , 183 pp.  mathnet

   2014
33. F. Götze, A. Yu. Zaitsev, “Explicit rates of approximation in the CLT for quadratic forms”, Annals of Probability, 42:1 (2014), 354–397 http://www.math.uni-bielefeld.de/sfb701/files/preprints/sfb10086.pdf, arXiv: 1104.0519  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus 16

   2016
34. Yu. S. Eliseeva, A. Yu. Zaitsev, “On the Littlewood–Offord problem”, J. Math. Sci. (N. Y.), 214:4 (2016), 467–473  mathnet  crossref  mathscinet  elib  scopus

   2014
35. Veroyatnost i statistika. 21, Posvyaschaetsya yubileyu Mikhaila Iosifovicha GORDINA, Zap. nauchn. sem. POMI, 431, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2014 , 258 pp.  mathnet

   2013
36. A. Yu. Zaitsev, “The accuracy of strong Gaussian approximation for sums of independent random vectors”, Russian Math. Surveys, 68:4 (2013), 721–761  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus

   2015
37. Yu. S. Eliseeva, F. Götze, A. Yu. Zaitsev, “Estimates for the concentration functions in the Littlewood–Offord problem”, J. Math. Sci. (N. Y.), 206:2 (2015), 146–158 , arXiv: 1203.6763  mathnet  crossref  mathscinet  zmath  elib  scopus  scopus

   2013
38. Veroyatnost i statistika. 19, Zap. nauchn. sem. POMI, 412, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2013 , 278 pp.  mathnet
39. Veroyatnost i statistika. 20, Zap. nauchn. sem. POMI, 420, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2013 , 178 pp.  mathnet

   2014
40. A. Yu. Zaitsev, “Approximation of convolutions by accompanying laws in the scheme of series”, J. Math. Sci. (N. Y.), 199:2 (2014), 162–167 , arXiv: 1312.5652  mathnet  crossref  mathscinet  mathscinet  zmath  elib  scopus

   2013
41. Yu. S. Eliseeva, A. Yu. Zaitsev, “Estimates of the concentration functions of weighted sums of independent random variables”, Theory Probab. Appl., 57:4 (2013), 670–678 , arXiv: 1203.5520  mathnet  crossref  crossref  mathscinet  mathscinet  zmath  adsnasa  isi  elib  elib  scopus

   2012
42. Veroyatnost i statistika. 18, Posvyaschaetsya yubileyu Ildara Abdullovicha IBRAGIMOVA, Zap. nauchn. sem. POMI, 408, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2012 , 330 pp.  mathnet

   2011
43. F. Götze, A. Yu. Zaitsev, “Estimates for the rate of strong approximation in Hilbert space”, Siberian Math. J., 52:4 (2011), 628–638 , arXiv: 1203.5695  mathnet  crossref  mathscinet  isi  elib  elib  scopus

   2013
44. A. Yu. Zaitsev, “Optimal estimates for the rate of strong Gaussian approximation in the infinite dimensional invariance principle”, J. Math. Sci. (N. Y.), 188:6 (2013), 689–693  mathnet  crossref  mathscinet  elib  elib  scopus

   2011
45. A. Yu. Zaitsev, “On the rate of decay of concentration functions of n-fold convolutions of probability distributions”, Vestnik St. Petersburg University: Mathematics, 44:2 (2011), 110–114  crossref  mathscinet  zmath  elib  elib  scopus
46. Veroyatnost i statistika. 17, Posvyaschaetsya yubileyu Valentina Nikolaevicha SOLEVA, Zap. nauchn. sem. POMI, 396, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2011 , 262 pp.  mathnet
47. F. Götze, A. Yu. Zaitsev, “Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms”, J. Math. Sci. (N. Y.), 176:2 (2011), 162–189  mathnet  crossref  elib  elib  scopus

   2010
48. Veroyatnost i statistika. 16, Zap. nauchn. sem. POMI, 384, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2010 , 315 pp.  mathnet
49. F. Götze, A. Yu. Zaitsev, “Rates of approximation in the multidimensional invariance principle for sums of i.i.d. random vectors with finite moments”, J. Math. Sci. (N. Y.), 167:4 (2010), 495–500  mathnet  crossref  mathscinet  elib  scopus

   2009
50. A. Yu. Zaitsev, “Rate of strong Gaussian approximation for the sums of i.i.d. multidimensional random vectors”, J. Math. Sci. (N. Y.), 163:4 (2009), 399–408  mathnet  crossref  elib  elib  scopus  scopus
51. Veroyatnost i statistika. 15, Zap. nauchn. sem. POMI, 368, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, POMI, SPb., 2009 , 288 pp.  mathnet

   2010
52. A. N. Borodin, A. Yu. Zaitsev, I. A. Ibragimov, M. A. Lifshits, “From editors”, J. Math. Sci. (N. Y.), 167:4 (2010), 435  mathnet  crossref  scopus  scopus

   2009
53. F. Götze, A. Yu. Zaitsev, “Bounds for the Rate of Strong Approximation in the Multidimensional Invariance Principle”, Theory Probab. Appl., 53:1 (2009), 59–80  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus

   2008
54. A. Yu. Zaitsev, “Estimates for the rate of strong Gaussian approximation for the sums of i.i.d. multidimensional random vectors”, J. Math. Sci. (N. Y.), 152:6 (2008), 875–884  mathnet  crossref  elib  elib  scopus

   2007
55. A. Yu. Zaitsev, “Estimates for the rate of strong approximation in the multidimensional invariance principle”, J. Math. Sci. (N. Y.), 145:2 (2007), 4856–4865  mathnet  crossref  mathscinet  zmath  elib  elib  scopus

   2005
56. A. Yu. Zaitsev, “Moderate deviations for the $L_1$-norm of kernel density estimators”, Vestnik St. Petersburg University: Mathematics, 38:4 (2005), 15–24  mathscinet  mathscinet  zmath  elib  scopus

   2006
57. F. Götze, A. Yu. Zaitsev, “Approximation of convolutions by accompanying laws without centering”, J. Math. Sci. (N. Y.), 137:1 (2006), 4510–4515  mathnet  crossref  mathscinet  elib  scopus

   2005
58. A. Yu. Zaitsev, “On approximation of the sample by a Poisson point process”, J. Math. Sci. (N. Y.), 128:1 (2005), 2556–2563  mathnet  crossref  mathscinet  zmath  elib  scopus

   2003
59. E. Giné, D.M. Mason, A.Yu. Zaitsev, “The $L_1$-norm density estimator process”, Annals of Probability, 31:2 (2003), 719–768  crossref  mathscinet  zmath  isi  elib  scopus 34
60. A. Yu. Zaitsev, “Estimates of the rate of approximation in the Central Limit Theorem for $L_1$-norm of kernel density estimators”, High Dimensional Probability. III, Progress in Probability, 55, eds. E. Giné, M. Marcus, J.A. Wellner, Birkhäuser, Basel, 2003, 255–292 http://arxiv.org/pdf/1402.1417v1.pdf  crossref  mathscinet  zmath  adsnasa  isi 1

   2002
61. A. Yu. Zaitsev, “Estimates for the strong approximation in multidimensional Central Limit Theorem”, Proceedings of the International Congress of Mathematicians (Bejing 2002), Invited Lectures, III, eds. Li, Ta Tsien et al., Higher Ed. Press, Bejing, 2002, 107–116 http://arxiv.org/abs/math/0304373  mathscinet  zmath  adsnasa
62. A. Yu. Zaitsev, “Estimates of the rate of approximation in a de-Poissonization lemma”, En l'honneur de J. Bretagnolle, D. Dacunha-Castelle, I. Ibragimov, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 38:6 (2002), 1071–1086  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus 2
63. A. Yu. Zaitsev, “Multidimensional Version of a Result of Sakhanenko in the Invariance Principle for Vectors with Finite Exponential Moments. III”, Theory Probab. Appl., 46:4 (2002), 676–698  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
64. A. Yu. Zaitsev, “Multidimensional Version of a Result of Sakhanenko in the Invariance Principle for Vectors with Finite Exponential Moments. II”, Theory Probab. Appl., 46:3 (2002), 490–514  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus

   2001
65. F. Götze, A. Yu. Zaitsev, “Multidimensional Hungarian construction for vectors with almost Gaussian smooth distributions”, Asymptotic Methods in Probability and Statistics with Applications, eds. N. Balakrishnan et al., Birkhäuser, 2001, 101–132 http://arxiv.org/pdf/1402.1420v1.pdf  crossref  mathscinet  zmath  adsnasa 1
66. A. Yu. Zaitsev, “On the strong Gaussian approximation in multidimensional case”, Annales de l'I.S.U.P. Publications de l'Institut de Statistique de l'Université de Paris, 45:2–3 (2001), 3–7  mathscinet  zmath
67. A. Yu. Zaitsev, “Multidimensional Version of a Result of Sakhanenko in the Invariance Principle for Vectors with Finite Exponential Moments. I”, Theory Probab. Appl., 45:4 (2001), 624–641  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus

   2000
68. F. Götze, A. Yu. Zaitsev, “A multiplicative inequality for concentration functions of $n$-fold convolutions”, High dimensional probability II, Progress in Probability, 47, eds. E. Giné, D. Mason, J. Wellner, Birkhäuser, Boston-Basel-Berlin, 2000, 39–47 http://arxiv.org/pdf/1402.6966v1.pdf  crossref  mathscinet  zmath  adsnasa  isi 2

   1998
69. F. Götze, A. Yu. Zaitsev, “Estimates for the rapid decay of concentration functions of $n$-fold convolutions”, Journal of Theoretical Probability, 11:3 (1998), 715–731  crossref  mathscinet  zmath  elib  scopus 10
70. A. Yu. Zaitsev, “Multidimensional version of the results of Komlos, Major and Tusnady for vectors with finite exponential moments”, ESAIM: Probability and Statistics, 2 (1998), 41–108  crossref  mathscinet  zmath  elib  scopus 49
71. V. Bentkus, F. Götze, A. Yu. Zaitsev, “Approximation of quadratic forms of independent random vectors by accompanying laws”, Theory Probab. Appl., 42:2 (1998), 189–212  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus

   1997
72. A. Yu. Zaitsev, “Multidimensional variant of the Komlós, Major and Tusnády results for vectors with finite exponential moments”, Dokl. Math. 56, No. 3, 935-937, 56:3 (1997), 935–937  mathnet  mathscinet  mathscinet  zmath  isi  elib

   1996
73. A. Yu. Zaitsev, “Estimates for the quantiles of smooth conditional distributions and the multidimensional invariance principle”, Siberian Math. J., 37:4 (1996), 706–729  mathnet  crossref  mathscinet  zmath  isi  scopus

   1999
74. A. Yu. Zaitsev, “Approximation of convolutions by accompanying laws under the existence of moment of low orders”, J. Math. Sci. (New York), 93:3 (1999), 336–340  mathnet  crossref  mathscinet  zmath  scopus

   1996
75. A. Yu. Zaitsev, “An improvement of U. Einmahl estimate in the multidimensional invariance principle”, Probability Theory and Mathematical Statistics. Proceedings of the Euler Institute Seminars Deducated to the Memory of Kolmogorov. St. Petersburg, 1993, I., eds. I. Ibragimov, A. Zaitsev, Gordon & Breach, 1996, 109-116  mathscinet  zmath
76. Sbornik statei, Probability theory and mathematical statistics. Lectures presented at the semester held in St. Petersburg, Russia, March 2–April 23, 1993., eds. I. A. Ibragimov, A.Yu. Zaitsev, Gordon and Breach Publishers, Amsterdam, 1996 , 321 pp.  mathscinet  zmath

   1995
77. A. Yu. Zaitsev, Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments, Universität Bielefeld, Bielefeld, 1995 , 115 pp., Working papers by Bielefeld University. Series “Sonderforschungsbereich 343”, no. 95-055 http://www.mathematik.uni-bielefeld.de/sfb343/preprints/index95.html  zmath

   1998
78. A. Yu. Zaitsev, “Nonstability of the inversion of the Radon transform”, J. Math. Sci., New York, 88:1 (1998), 53–58  mathnet  crossref  mathscinet  mathscinet  zmath  zmath  scopus

   1994
79. Problemy teorii veroyatnostnykh raspredelenii. 13, Zap. nauchn. sem. POMI, 216, ed. A. Yu. Zaitsev, V. N. Sudakov, Nauka, SPb., 1994 , 166 pp.  mathnet  zmath

   1993
80. A. Yu. Zaitsev, “Approksimatsiya svertok soprovozhdayuschimi zakonami pri momentnykh ogranicheniyakh”, Koltsa i moduli. Predelnye teoremy teorii veroyatnostei, 3, SPbGU, 1993, 152–158  mathscinet  zmath

   1995
81. A. Yu. Zaitsev, “Approximation of convolutions of probability distributions by infinitely divisible laws under weakened moment restrictions”, J. Math. Sci. (N. Y.), 75:5 (1995), 1922–1930  mathnet  crossref  mathscinet  scopus

   1991
82. A. Yu. Zaitsev, “An example of a distribution whose set of $n$-fold convolutions is uniformly separated from the set of infinitely divisible laws in the sense of the variation distance”, Theory Probab. Appl., 36:2 (1991), 419–425  mathnet  crossref  mathscinet  mathscinet  zmath  zmath  isi
83. A. Yu. Zaitsev, “Approksimatsiya svertok bezgranichno delimymi zakonami pri momentnykh ogranicheniyakh.” (Mezhdunarodnyi Suzdalskii seminar 1991 goda po problemam ustoichivosti stokhasticheskikh modelei), Teoriya veroyatnostei i ee primeneniya, 36, vyp. 4, eds. V. M. Zolotarev, Nauka, 1991, 787–788  crossref  zmath

   1994
84. A. Yu. Zaitsev, “Certain class of nonuniform estimates in multidimensional limit theorems”, J. Math. Sci. (N. Y.), 68:4 (1994), 459–468  mathnet  crossref  mathscinet  zmath  scopus

   1990
85. A. Yu. Zaitsev, “On the approximation of convolutions by infinitely divisible distributions”, Probability theory and mathematical statistics, Proc. 5th Vilnius Conf. (Vilnius, 1989), II, Mokslas, Vilnius, 1990, 602–608  mathscinet  zmath

   1989
86. A. Yu. Zaitsev, “Multivariate Version of the Second Kolmogorov's Uniform Limit Theorem”, Theory Probab. Appl., 34:1 (1989), 108–128  mathnet  crossref  mathscinet  zmath  isi

   1992
87. A. Yu. Zaitsev, “On the approximation of convolutions of multi-dimensional symmetric distributions by accompaning laws”, J. Soviet Math., 61:1 (1992), 1859–1872  mathnet  crossref  mathscinet  zmath  scopus

   1988
88. A. Yu. Zaitsev, “Estimates for the closeness of successive convolutions of multidimensional symmetric distributions”, Probability Theory and Related Fields, 79:2 (1988), 175–200  crossref  mathscinet  zmath  isi  elib  scopus 25
89. A. Yu. Zaitsev, “On the approximation of distributions of sums of independent random vectors.”, Annales Academiae Scientiarum Fennicae. Ser. A. I. Mathematika, 13 (1988), 277–282  crossref  mathscinet  zmath  isi
90. A. Yu. Zaitsev, “O svyazi mezhdu dvumya klassami veroyatnostnykh raspredelenii”, Koltsa i moduli. Predelnye teoremy teorii veroyatnostei, 2, Izd-vo LGU, Leningrad, 1988, 153–158  mathscinet

   1987
91. A. Yu. Zaitsev, “On the Uniform Approximation of Distributions of Sums of Independent Random Variables”, Theory Probab. Appl., 32:1 (1987), 40–47  mathnet  crossref  mathscinet  zmath  isi
92. A. Yu. Zaitsev, “On the Gaussian approximation of convolutions under multidimensional analogues of S.N. Bernstein's inequality conditions”, Probability Theory and Related Fields, 74:4 (1987), 535–566  crossref  mathscinet  zmath  isi  elib  scopus 49
93. A. Yu. Zaitsev, “On the uniform approximation of distribution functions of sums of independent non-identically distributed random variables”, Probability theory and applications, Proc. World Congr. Bernoulli Soc., Tashkent/USSR 1986, Vol. 1, VNU Science Press, 1987, 697–700  mathscinet  zmath

   1988
94. A. Yu. Zaitsev, “Multidimensional generalized method of triangular functions”, J. Soviet Math., 43:6 (1988), 2797–2810  mathnet  crossref  mathscinet  zmath  zmath  scopus

   1987
95. A. Yu. Zaitsev, “Letter to editors”, Theory Probab. Appl., 32:4 (1987), 750  mathnet  crossref  mathscinet  isi

   1988
96. T. V. Arak, A. Yu. Zaitsev, Uniform limit theorems for sums of independent random variables, Proc. Steklov Inst. Math., 174, AMS, 1988 , 222 pp. http://www.ams.org/bookstore-getitem/item=STEKLO-174  mathnet  mathscinet  zmath

   1987
97. A. Yu. Zaitsev, “On the logarithmic factor in the smoothing inequalities for Levi and Levi–Prohorov distances”, Theory Probab. Appl., 31:4 (1987), 691–693  mathnet  crossref  mathscinet  zmath  isi

   1986
98. A. Yu. Zaitsev, “Estimates for the Lévy-Prokhorov distance in the multivariate central limit theorem for random vectors with finite exponential moments”, Theory Probab. Appl., 31:2 (1986), 203–220  mathnet  crossref  mathscinet  zmath  isi

   1987
99. A. Yu. Zaitsev, “Approximation of convolutions of multidimensional distributions”, J. Soviet Math., 36:4 (1987), 482–489  mathnet  crossref  mathscinet  zmath  scopus

   1986
100. A. Yu. Zaitsev, “Some remarks regarding the approximation of distributions of sums of independent terms”, J. Soviet Math., 33:1 (1986), 728–733  mathnet  crossref  mathscinet  mathscinet  zmath  zmath  scopus

   1984
101. A. Yu. Zaitsev, “On approximation by Gaussian distributions under realization of multidimensional analogues of Bernstein conditions”, Sov. Math., Dokl., 29 (1984), 624–626  mathnet  mathscinet  mathscinet  zmath  zmath

   1985
102. A. Yu. Zaitsev, “On the approximation of distributions of sums of independent random vectors”, Theory Probab. Appl., 29:4 (1985), 847–848  mathnet  crossref  mathscinet  isi

   1984
103. A. Yu. Zaitsev, “Approximation by Gaussian distributions with satisfaction of multidimensional analogues of Bernstein's conditions”, Dokl. Akad. Nauk SSSR, 276:5 (1984), 1046–1048  mathnet  mathscinet  zmath

   1985
104. A. Yu. Zaitsev, “Letter to the editors”, Theory Probab. Appl., 29:1 (1985), 199  mathnet  crossref  mathscinet

   1984
105. A. Yu. Zaitsev, “On the accuracy of approximation of distributions of sums of independent random variables – which are nonzero with a small probability – by means of accompanying laws”, Theory Probab. Appl., 28:4 (1984), 657–669  mathnet  crossref  mathscinet  zmath  zmath  isi
106. A. Yu. Zaǐtsev, T. V. Arak, “On the rate of convergence in the second Kolmogorov's uniform limit theorem”, Theory Probab. Appl., 28:2 (1984), 351–374  mathnet  crossref  mathscinet  zmath  zmath  isi
107. A. Yu. Zaitsev, “Approximation by infinitely divisible distributions in the multidimensional case”, J. Soviet Math., 27:6 (1984), 3227-3237  mathnet  crossref  mathscinet  zmath  zmath  scopus
108. A. Yu. Zaitsev, “Estimates for the closeness of successive convolutions of symmetric distributions”, Summary of Reports Presented at Sessions of the Probability and Mathematical Statistics Seminar at the Leningrad Section of the Mathematical Institute of the USSR Academy of Sciences 1981, Theory Probab. Appl., 28:1 (1984), 194–195  mathnet  crossref  mathscinet  mathscinet  isi
109. A. Yu. Zaitsev, “Estimates for the Levy-Prokhorov distance in terms of characteristic functions and some of their applications”, J. Soviet Math., 27:5 (1984), 3070–3083  mathnet  crossref  mathscinet  mathscinet  zmath  zmath  scopus
110. A. Yu. Zaitsev, “Use of the concentration function for estimating the uniform distance.”, J. Soviet Math., 27:5 (1984), 3059–3070  mathnet  crossref  mathscinet  zmath  zmath  scopus

   1982
111. T. V. Arak, A. Yu. Zaitsev, “An estimate of the rate of convergence in the second uniform limit theorem of Kolmogorov”, Sov. Math., Dokl., 26 (1982), 509–513  mathnet  mathscinet  mathscinet  mathscinet  zmath

   1981
112. A. Yu. Zaitsev, “Some properties of $n$-fold convolutions of distributions”, Theory Probab. Appl., 26:1 (1981), 148–152  mathnet  crossref  mathscinet  zmath  isi
113. A. Yu. Zaitsev, “On approximating the distributions of sums of independent terms by infinitely divisible laws in the Levy metric”, Sov. Math., Dokl., 24 (1981), 382–385  mathnet  mathscinet  mathscinet  mathscinet  zmath
114. A. Yu. Zaitsev, “Some estimates for the distributions of sums of independent random variables and vectors”, Theory Probab. Appl., 26:1 (1981), 188–188  mathnet  crossref  isi
115. A. Yu. Zaitsev, “On approximating distributions of sums of independent random vectors by infinitely divisible laws”, Theory Probab. Appl., 26:3 (1981), 621–622  mathnet  crossref  mathscinet  isi

   1984
116. A. Yu. Zaitsev, “The estimation of proximity of distribution of sequential sums of independent identically distributed random vectors”, J. Soviet Math., 24:5 (1984), 536–539  mathnet  crossref  mathscinet  zmath  scopus

   1980
117. A. Yu. Zaitsev, “On the approach of distributions of sums of independent nonidentically distributed random variables with accompanying laws”, Sov. Math., Dokl., 21 (1980), 732–733.  mathnet  mathscinet  mathscinet  zmath
118. A. Yu. Zaitsev, “On the approximation of distributions of sums of independent random vectors by infinitely divisible distributions”, Sov. Math., Dokl., 22 (1980), 67–69  mathnet  mathscinet  mathscinet  mathscinet  zmath
119. A. Yu. Zaitsev, Otsenki tochnosti approksimatsii raspredelenii summ nezavisimykh sluchainykh vektorov bezgranichno delimymi raspredeleniyami, “Diss. … kand. fiz.-matem. nauk”, Leningradskoe otdelenie Matematicheskogo instituta im. V.A.Steklova AN SSSR, Leningrad, 1980 , 129 pp.  crossref

Presentations in Math-Net.Ru
1. О распределении сумм независимых слагаемых
A. Yu. Zaitsev
Applied statistics
November 15, 2024 12:30
2. On the proximity of distributions of successive sums on convex sets and in the Prokhorov metric
A. Yu. Zaitsev
Scientific seminar of the Faculty of Physics and Mathematics of Smolensk State University
June 24, 2024 15:30
3. Estimates of the proximity of successive convolutions of the probability distributions on the convex sets and in the Prokhorov distance
A. Yu. Zaitsev
Joint Mathematical seminar of Saint Petersburg State University and Peking University
April 25, 2024 15:00
4. О близости распределений последовательных сумм на выпуклых множествах и в метрике Прохорова
A. Yu. Zaitsev
Principle Seminar of the Department of Probability Theory, Moscow State University
March 27, 2024 16:45
5. О близости распределений последовательных сумм в метрике Прохорова
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
December 29, 2023 18:00
6. Оценки устойчивости по количеству слагаемых для распределений сумм независимых одинаково распределенных случайных векторов
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
October 20, 2023 18:00
7. Новые оценки в проблеме Литтлвуда-Оффорда
A. Yu. Zaitsev
Probability and Approximation
March 30, 2023 18:00
8. Новые неравенства в проблеме Литтлвуда–Оффорда
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
March 24, 2023 18:00
9. О распределениях сумм независимых слагаемых
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
February 11, 2022 18:00
10. Infinite-dimensional version of Kolmogorov’s second uniform limit theorem
Andrey Zaitsev
International Conference "Theory of Probability and Its Applications: P. L. Chebyshev – 200" (The 6th International Conference on Stochastic Methods)
May 18, 2021 18:00   
11. Бесконечномерный вариант второй равномерной предельной теоремы Колмогорова
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
April 2, 2021 18:00
12. Улучшенный многомерный вариант второй равномерной предельной теоремы Колмогорова
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
November 15, 2019 18:00   
13. Редкие события, безгранично делимая аппроксимация сверток вероятностных распределений и пуассоновские точечные процессы
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
February 9, 2018 18:00
14. Неравенства Арака для функций концентрации и проблема Литтлвуда–Оффорда
A. Yu. Zaitsev
Traditional winter session MIAN–POMI devoted to the topic "Probability theory"
December 15, 2016 12:30
15. О проблеме Литтлвуда–Оффорда
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
September 30, 2016 18:00
16. О связи неравенств Арака с проблемой Литтлвуда-Оффорда
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
April 1, 2016 18:00
17. Аппроксимация сверток вероятностных распределений безгранично делимыми законами
A. Yu. Zaitsev
Seminar of Chebyshev Laboratory on Probability Theory
March 4, 2016 16:00
18. Неравенства Арака для функций концентрации и проблема Литтлвуда–Оффорда
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
September 25, 2015 18:00
19. On the application of Arak's inequalities for concentration functions to the Littlewood-Offord problem
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
May 22, 2015 18:00
20. Некоторые результаты для сумм независимых случайных векторов
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
February 27, 2015 18:00
21. Some Results Concerning the Sums of Independent Random Vectors
A. Yu. Zaitsev
International Scientific Conference "Probability Theory and its Applications" On Occasion of 85th Birthday of Yu. V. Prokhorov
February 14, 2015 10:45   
22. Условия быстрого убывания функций концентрации сверток вероятностных распределений
Yu. S. Eliseeva, A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
October 3, 2014 18:00
23. Оценки функций концентрации взвешенных сумм независимых одинаково распределенных случайных величин
Yu. S. Eliseeva, A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
September 21, 2012 18:00
24. Estimates for a strong approximation in the multidimensional invariance principle
A. Yu. Zaitsev
Traditional winter session MIAN–POMI devoted to the topic "Probability and Functional Analysis"
February 17, 2012 10:00   
25. Оценки точности сильной аппроксимации в гильбертовом пространстве
A. Yu. Zaitsev
Seminar on Probability Theory and Mathematical Statistics
May 20, 2011 18:00

Books in Math-Net.Ru
  1. Probability and statistics. Part 36, Zap. Nauchn. Sem. POMI, 535, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2024, 315 с.
    http://mi.mathnet.ru/book2073
  2. Probability and statistics. Part 34, Zap. Nauchn. Sem. POMI, 525, ed. A. Yu. Zaitsev, M. A. Lifshits, 2023, 189 с.
    http://mi.mathnet.ru/book1981
  3. Probability and statistics. Part 35, Zap. Nauchn. Sem. POMI, 526, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2023, 211 с.
    http://mi.mathnet.ru/book1982
  4. Probability and statistics. Part 32, Zap. Nauchn. Sem. POMI, 510, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2022, 287 с.
    http://mi.mathnet.ru/book1937
  5. Probability and statistics. Part 33, Zap. Nauchn. Sem. POMI, 515, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2022, 238 с.
    http://mi.mathnet.ru/book1942
  6. Probability and statistics. Part 30, Zap. Nauchn. Sem. POMI, 501, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2021, 343 с.
    http://mi.mathnet.ru/book1886
  7. Probability and statistics. Part 31, Zap. Nauchn. Sem. POMI, 505, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2021, 330 с.
    http://mi.mathnet.ru/book1891
  8. Probability and statistics. Part 29, Zap. Nauchn. Sem. POMI, 495, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2020, 322 с.
    http://mi.mathnet.ru/book1853
  9. Probability and statistics. Part 28, Zap. Nauchn. Sem. POMI, 486, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2019, 309 с.
    http://mi.mathnet.ru/book1817
  10. Probability and statistics. Part 27, Zap. Nauchn. Sem. POMI, 474, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2018, 247 с.
    http://mi.mathnet.ru/book1764
  11. Probability and statistics. Part 25, Zap. Nauchn. Sem. POMI, 457, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2017, 322 с.
    http://mi.mathnet.ru/book1702
  12. Probability and statistics. Part 26, Zap. Nauchn. Sem. POMI, 466, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2017, 338 с.
    http://mi.mathnet.ru/book1711
  13. Probability and statistics. Part 24, Zap. Nauchn. Sem. POMI, 454, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2016, 315 с.
    http://mi.mathnet.ru/book1676
  14. Probability and statistics. Part 22, Zap. Nauchn. Sem. POMI, 441, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2015, 324 с.
    http://mi.mathnet.ru/book1611
  15. Probability and statistics. Part 23, Zap. Nauchn. Sem. POMI, 442, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2015, 183 с.
    http://mi.mathnet.ru/book1612
  16. Probability and statistics. Part 21, Zap. Nauchn. Sem. POMI, 431, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2014, 258 с.
    http://mi.mathnet.ru/book1572
  17. Probability and statistics. Part 19, Zap. Nauchn. Sem. POMI, 412, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2013, 278 с.
    http://mi.mathnet.ru/book1486
  18. Probability and statistics. Part 20, Zap. Nauchn. Sem. POMI, 420, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2013, 178 с.
    http://mi.mathnet.ru/book1503
  19. Probability and statistics. Part 18, Zap. Nauchn. Sem. POMI, 408, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2012, 330 с.
    http://mi.mathnet.ru/book1467
  20. Probability and statistics. Part 17, Zap. Nauchn. Sem. POMI, 396, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2011, 262 с.
    http://mi.mathnet.ru/book1369
  21. Probability and statistics. Part 16, Zap. Nauchn. Sem. POMI, 384, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2010, 315 с.
    http://mi.mathnet.ru/book1333
  22. Probability and statistics. Part 15, Zap. Nauchn. Sem. POMI, 368, ed. A. N. Borodin, A. Yu. Zaitsev, M. A. Lifshits, 2009, 288 с.
    http://mi.mathnet.ru/book1224
  23. Problems of the theory of probability distributions. Part 13, Zap. Nauchn. Sem. POMI, 216, ed. A. Yu. Zaitsev, V. N. Sudakov, 1994, 166 с.
    http://mi.mathnet.ru/book918
  24. T. V. Arak, A. Yu. Zaitsev, Uniform limit theorems for sums of independent random variables, Trudy Mat. Inst. Steklov., 174, ed. I. A. Ibragimov, 1986, 217 с.
    http://mi.mathnet.ru/book1163

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024