Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Orlov, Igor Vladimirovich

Statistics Math-Net.Ru
Total publications: 22
Scientific articles: 22

Number of views:
This page:9521
Abstract pages:14749
Full texts:3545
References:1036
Professor
Doctor of physico-mathematical sciences (2005)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
E-mail:

https://www.mathnet.ru/eng/person23484
List of publications on Google Scholar
https://zbmath.org/authors/ai:orlov.igor-v
https://mathscinet.ams.org/mathscinet/MRAuthorID/264497
https://orcid.org/0000-0001-9363-2637

Publications in Math-Net.Ru Citations
2018
1. I. V. Orlov, “Generalized Hamel basis and basis extension in convex cones and uniquely divisible semigroups”, Eurasian Math. J., 9:1 (2018),  69–82  mathnet
2. I. V. Orlov, “The Method of Lagrange Multipliers for the Class of Subsmooth Mappings”, Mat. Zametki, 103:2 (2018),  316–320  mathnet  mathscinet  elib; Math. Notes, 103:2 (2018), 323–327  isi  scopus
2017
3. I. V. Orlov, “Embedding of a Uniquely Divisible Abelian Semigroup In a Convex Cone”, Mat. Zametki, 102:3 (2017),  396–404  mathnet  mathscinet  elib; Math. Notes, 102:3 (2017), 361–368  isi  scopus 3
2016
4. I. V. Orlov, “Inverse and Implicit Function Theorems in the Class of Subsmooth Maps”, Mat. Zametki, 99:4 (2016),  631–634  mathnet  mathscinet  zmath  elib; Math. Notes, 99:4 (2016), 619–622  isi  elib  scopus 8
2015
5. I. V. Orlov, I. V. Baran, “Introduction to sublinear analysis – 2: symmetric case”, CMFD, 57 (2015),  108–161  mathnet; Journal of Mathematical Sciences, 225:2 (2017), 265–321 1
6. I. V. Orlov, S. I. Smirnova, “Invertibility of multivalued sublinear operators”, Eurasian Math. J., 6:4 (2015),  44–58  mathnet  isi 5
7. I. V. Orlov, A. V. Tsygankova, “Multidimensional variational functionals with subsmooth integrands”, Eurasian Math. J., 6:3 (2015),  54–75  mathnet  isi 1
8. I. V. Orlov, I. A. Romanenko, “Dominant integrands growth estimates and smoothness of variational functionals in Sobolev spaces”, Izv. Saratov Univ. Math. Mech. Inform., 15:4 (2015),  422–432  mathnet  elib
2014
9. I. V. Orlov, “Introduction to sublinear analysis”, CMFD, 53 (2014),  64–132  mathnet; Journal of Mathematical Sciences, 218:4 (2016), 430–502 13
2013
10. I. V. Orlov, Z. I. Khalilova, “Compact subdifferentials in Banach spaces and their applications to variational functionals”, CMFD, 49 (2013),  99–131  mathnet; Journal of Mathematical Sciences, 211:4 (2015), 542–578  scopus 12
2012
11. I. V. Orlov, “Compact-analytical properties of variational functional in Sobolev spaces $W^{1,p}$”, Eurasian Math. J., 3:2 (2012),  94–119  mathnet  mathscinet  zmath 2
2010
12. I. V. Orlov, F. S. Stonyakin, “The limiting form of the Radon–Nikodym property is true for all Fréchet spaces”, CMFD, 37 (2010),  55–69  mathnet  mathscinet; Journal of Mathematical Sciences, 180:6 (2012), 731–747  scopus 9
13. I. V. Orlov, “Banach–Zaretsky theorem for compactly absolutely continuous mappings”, CMFD, 37 (2010),  38–54  mathnet  mathscinet; Journal of Mathematical Sciences, 180:6 (2012), 710–730  scopus
14. I. V. Orlov, “Inverse extremal problem for variational functionals”, Eurasian Math. J., 1:4 (2010),  95–115  mathnet  mathscinet  zmath 1
2009
15. I. V. Orlov, F. S. Stonyakin, “Compact subdifferentials: the formula of finite increments and related topics”, CMFD, 34 (2009),  121–138  mathnet  mathscinet; Journal of Mathematical Sciences, 170:2 (2010), 251–269  scopus 15
2008
16. I. V. Orlov, “Hilbert compacts, compact ellipsoids, and compact extrema”, CMFD, 29 (2008),  165–175  mathnet  mathscinet; Journal of Mathematical Sciences, 164:4 (2010), 637–647  scopus 7
2006
17. I. V. Orlov, “Principles of functional analysis in scales of spaces: Hahn–Banach theorem, Banach theorem on homomorphism, and theorems on open mapping and closed graph”, Fundam. Prikl. Mat., 12:5 (2006),  153–173  mathnet  mathscinet  zmath; J. Math. Sci., 150:6 (2008), 2563–2577  scopus
2002
18. I. V. Orlov, “Normal Decompositions of Operator Spaces over Locally Convex Spaces”, Funktsional. Anal. i Prilozhen., 36:4 (2002),  78–80  mathnet  mathscinet  zmath; Funct. Anal. Appl., 36:4 (2002), 318–320  isi  scopus 1
2001
19. I. V. Orlov, “Finite increments formula for mappings into inductive scales of spaces”, Mat. Fiz. Anal. Geom., 8:4 (2001),  419–439  mathnet  mathscinet  zmath 2
1973
20. I. V. Orlov, “Change of variables in a Lebesgue multiple integral and in an $A$-integral”, Dokl. Akad. Nauk SSSR, 210:1 (1973),  30–32  mathnet  mathscinet  zmath
21. I. V. Orlov, “Change of variables in a multiple Lebesgue integral”, Mat. Zametki, 14:1 (1973),  39–48  mathnet  mathscinet  zmath; Math. Notes, 14:1 (1973), 575–581
22. I. V. Orlov, “Change of variable in the one-dimensional Lebesgue integral”, Mat. Zametki, 13:5 (1973),  747–758  mathnet  mathscinet  zmath; Math. Notes, 13:5 (1973), 446–452

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024