|
|
Publications in Math-Net.Ru |
Citations |
|
2018 |
1. |
I. V. Orlov, “Generalized Hamel basis and basis extension in convex cones and uniquely divisible semigroups”, Eurasian Math. J., 9:1 (2018), 69–82 |
2. |
I. V. Orlov, “The Method of Lagrange Multipliers for the Class of Subsmooth Mappings”, Mat. Zametki, 103:2 (2018), 316–320 ; Math. Notes, 103:2 (2018), 323–327 |
|
2017 |
3. |
I. V. Orlov, “Embedding of a Uniquely Divisible Abelian Semigroup In a Convex Cone”, Mat. Zametki, 102:3 (2017), 396–404 ; Math. Notes, 102:3 (2017), 361–368 |
3
|
|
2016 |
4. |
I. V. Orlov, “Inverse and Implicit Function Theorems in the Class of Subsmooth Maps”, Mat. Zametki, 99:4 (2016), 631–634 ; Math. Notes, 99:4 (2016), 619–622 |
8
|
|
2015 |
5. |
I. V. Orlov, I. V. Baran, “Introduction to sublinear analysis – 2: symmetric case”, CMFD, 57 (2015), 108–161 ; Journal of Mathematical Sciences, 225:2 (2017), 265–321 |
1
|
6. |
I. V. Orlov, S. I. Smirnova, “Invertibility of multivalued sublinear operators”, Eurasian Math. J., 6:4 (2015), 44–58 |
5
|
7. |
I. V. Orlov, A. V. Tsygankova, “Multidimensional variational functionals with subsmooth integrands”, Eurasian Math. J., 6:3 (2015), 54–75 |
1
|
8. |
I. V. Orlov, I. A. Romanenko, “Dominant integrands growth estimates and smoothness of variational functionals in Sobolev spaces”, Izv. Saratov Univ. Math. Mech. Inform., 15:4 (2015), 422–432 |
|
2014 |
9. |
I. V. Orlov, “Introduction to sublinear analysis”, CMFD, 53 (2014), 64–132 ; Journal of Mathematical Sciences, 218:4 (2016), 430–502 |
13
|
|
2013 |
10. |
I. V. Orlov, Z. I. Khalilova, “Compact subdifferentials in Banach spaces and their applications to variational functionals”, CMFD, 49 (2013), 99–131 ; Journal of Mathematical Sciences, 211:4 (2015), 542–578 |
12
|
|
2012 |
11. |
I. V. Orlov, “Compact-analytical properties of variational functional in Sobolev spaces $W^{1,p}$”, Eurasian Math. J., 3:2 (2012), 94–119 |
2
|
|
2010 |
12. |
I. V. Orlov, F. S. Stonyakin, “The limiting form of the Radon–Nikodym property is true for all Fréchet spaces”, CMFD, 37 (2010), 55–69 ; Journal of Mathematical Sciences, 180:6 (2012), 731–747 |
9
|
13. |
I. V. Orlov, “Banach–Zaretsky theorem for compactly absolutely continuous mappings”, CMFD, 37 (2010), 38–54 ; Journal of Mathematical Sciences, 180:6 (2012), 710–730 |
14. |
I. V. Orlov, “Inverse extremal problem for variational functionals”, Eurasian Math. J., 1:4 (2010), 95–115 |
1
|
|
2009 |
15. |
I. V. Orlov, F. S. Stonyakin, “Compact subdifferentials: the formula of finite increments and related topics”, CMFD, 34 (2009), 121–138 ; Journal of Mathematical Sciences, 170:2 (2010), 251–269 |
15
|
|
2008 |
16. |
I. V. Orlov, “Hilbert compacts, compact ellipsoids, and compact extrema”, CMFD, 29 (2008), 165–175 ; Journal of Mathematical Sciences, 164:4 (2010), 637–647 |
7
|
|
2006 |
17. |
I. V. Orlov, “Principles of functional analysis in scales of spaces: Hahn–Banach theorem, Banach theorem on homomorphism, and theorems on open mapping and closed graph”, Fundam. Prikl. Mat., 12:5 (2006), 153–173 ; J. Math. Sci., 150:6 (2008), 2563–2577 |
|
2002 |
18. |
I. V. Orlov, “Normal Decompositions of Operator Spaces over Locally Convex Spaces”, Funktsional. Anal. i Prilozhen., 36:4 (2002), 78–80 ; Funct. Anal. Appl., 36:4 (2002), 318–320 |
1
|
|
2001 |
19. |
I. V. Orlov, “Finite increments formula for mappings into inductive scales of spaces”, Mat. Fiz. Anal. Geom., 8:4 (2001), 419–439 |
2
|
|
1973 |
20. |
I. V. Orlov, “Change of variables in a Lebesgue multiple integral and in an $A$-integral”, Dokl. Akad. Nauk SSSR, 210:1 (1973), 30–32 |
21. |
I. V. Orlov, “Change of variables in a multiple Lebesgue integral”, Mat. Zametki, 14:1 (1973), 39–48 ; Math. Notes, 14:1 (1973), 575–581 |
22. |
I. V. Orlov, “Change of variable in the one-dimensional Lebesgue integral”, Mat. Zametki, 13:5 (1973), 747–758 ; Math. Notes, 13:5 (1973), 446–452 |
|
Organisations |
|
|
|
|