Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Novitskii, M V

Statistics Math-Net.Ru
Total publications: 12
Scientific articles: 12

Number of views:
This page:909
Abstract pages:2174
Full texts:714
References:334

https://www.mathnet.ru/eng/person23014
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/225405

Publications in Math-Net.Ru Citations
1994
1. M. V. Novitskii, “Quasi-analytic classes of decreasing functions and integrals of motion of the Korteweg–de Vries equation”, Dokl. Akad. Nauk, 335:2 (1994),  150–152  mathnet  mathscinet  zmath; Dokl. Math., 49:2 (1994), 271–275
1993
2. M. V. Novitskii, “An analogue of an inequality of Kolmogorov–Markov type for ordinary differential operators”, Mat. Zametki, 53:3 (1993),  80–91  mathnet  mathscinet  zmath; Math. Notes, 53:3 (1993), 300–308  isi
1989
3. M. V. Novitskii, “Bilateral estimates of polynomial conservation laws for the KdV equation and their applications”, Funktsional. Anal. i Prilozhen., 23:3 (1989),  78–79  mathnet  mathscinet  zmath; Funct. Anal. Appl., 23:3 (1989), 238–240  isi 1
1986
4. S. A. Molchanov, M. V. Novitskii, “Spectral invariants of the Schrödinger operator on a Euclidean torus”, Dokl. Akad. Nauk SSSR, 286:2 (1986),  287–291  mathnet  mathscinet  zmath
1985
5. M. V. Novitskii, “Reconstruction of the function of the rotation number for the Schrödinger operator with almost-periodic potential from a countable set of polynomial invariance laws”, Funktsional. Anal. i Prilozhen., 19:3 (1985),  90–91  mathnet  mathscinet  zmath; Funct. Anal. Appl., 19:3 (1985), 243–245  isi
6. M. V. Novitskii, “On the recovery, from a countable collection of polynomial conservation laws, of action variables for the KdV equation in the class of almost periodic functions”, Mat. Sb. (N.S.), 128(170):3(11) (1985),  416–428  mathnet  mathscinet  zmath; Math. USSR-Sb., 56:2 (1987), 417–428 1
1982
7. M. V. Novitskii, “On a certain class of positive eigenfunctions of a second-order elliptic operator”, Sibirsk. Mat. Zh., 23:1 (1982),  130–135  mathnet  mathscinet  zmath; Siberian Math. J., 23:1 (1982), 101–105  isi
1981
8. M. V. Novitskii, “Integral representation of completely excessive elements and completely $L$-superharmonic functions”, Funktsional. Anal. i Prilozhen., 15:3 (1981),  67–78  mathnet  mathscinet  zmath; Funct. Anal. Appl., 15:3 (1981), 207–216  isi
1977
9. M. V. Novitskii, “A general integral representation of completely $L$-superharmonic functions”, Dokl. Akad. Nauk SSSR, 236:3 (1977),  538–540  mathnet  mathscinet  zmath 1
1975
10. M. V. Novitskii, “An integral representation of totally excessive elements”, Dokl. Akad. Nauk SSSR, 225:3 (1975),  511–514  mathnet  mathscinet  zmath 1
11. M. V. Novitskii, “Representation of complete $L$-superharmonic functions”, Funktsional. Anal. i Prilozhen., 9:2 (1975),  83–84  mathnet  mathscinet  zmath; Funct. Anal. Appl., 9:2 (1975), 168–169
12. M. V. Novitskii, “Representation of completely $L$-superharmonic functions”, Izv. Akad. Nauk SSSR Ser. Mat., 39:6 (1975),  1346–1365  mathnet  mathscinet  zmath; Math. USSR-Izv., 9:6 (1975), 1279–1296 2

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024