Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1975, Volume 9, Issue 6, Pages 1279–1296
DOI: https://doi.org/10.1070/IM1975v009n06ABEH001521
(Mi im2095)
 

This article is cited in 2 scientific papers (total in 2 papers)

Representation of completely $L$-superharmonic functions

M. V. Novitskii
References:
Abstract: An infinitely differentiable function $u(x)$ is said to be completely $L$-superharmonic if it satisfies the condition $(-1)^nL^nu(x)\geqslant0$, $n=0,1,2,\dots$, where $L$ is a second-order elliptic operator and belongs to a bounded domain with a sufficiently smooth boundary. An integral representation is given in this paper for such functions, and a study of their analytic nature is carried out.
Bibliography: 17 titles.
Received: 16.05.1974
Bibliographic databases:
UDC: 517.5
MSC: Primary 31B05, 31B10; Secondary 35J25, 47F05
Language: English
Original paper language: Russian
Citation: M. V. Novitskii, “Representation of completely $L$-superharmonic functions”, Math. USSR-Izv., 9:6 (1975), 1279–1296
Citation in format AMSBIB
\Bibitem{Nov75}
\by M.~V.~Novitskii
\paper Representation of completely $L$-superharmonic functions
\jour Math. USSR-Izv.
\yr 1975
\vol 9
\issue 6
\pages 1279--1296
\mathnet{http://mi.mathnet.ru//eng/im2095}
\crossref{https://doi.org/10.1070/IM1975v009n06ABEH001521}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=407299}
\zmath{https://zbmath.org/?q=an:0314.31009}
Linking options:
  • https://www.mathnet.ru/eng/im2095
  • https://doi.org/10.1070/IM1975v009n06ABEH001521
  • https://www.mathnet.ru/eng/im/v39/i6/p1346
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:363
    Russian version PDF:84
    English version PDF:22
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024