Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Degtyarev, Sergey Petrovich

Statistics Math-Net.Ru
Total publications: 8
Scientific articles: 8

Number of views:
This page:3058
Abstract pages:4012
Full texts:1260
References:474
Doctor of physico-mathematical sciences
E-mail:
Keywords: quasilinear degenerate parabolic equation, instantaneous support shrinking, Stefan problem, classical solvability, porous medium equation, degenerate parabolic equations.
   
Main publications:
  • O klassicheskoi razreshimosti mnogomernoi zadachi Stefana pri konvektivnom dvizhenii vyazkoi neszhimaemoi zhidkosti. Mat. sbornik, 1987, t. 132(174), vyp. 1.
  • Klassicheskaya razreshimost nestatsionarnoi zadachi Stefana s konvektsiei. DAN SSSR, 1986, t. 287, # 1.
  • L_1-L_infty otsenki resheniya zadachi Koshi dlya anizotropnogo vyrozhdayuschegosya parabolicheskogo uravneniya s dvoinoi nelineinostyu i rastuschimi nachalnymi dannymi. Mat. sbornik, 2007, t. 198, # 5.

https://www.mathnet.ru/eng/person21271
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/226488

Publications in Math-Net.Ru Citations
2021
1. S. P. Degtyarev, “On the phenomenon of the support shrinking of a solution with a time delay and on the extinction of the solution”, Mat. Sb., 212:2 (2021),  38–52  mathnet  mathscinet  elib; Sb. Math., 212:2 (2021), 170–184  isi  scopus
2013
2. B. V. Bazalii, S. P. Degtyarev, “A boundary-value problem in weighted Hölder spaces for elliptic equations which degenerate at the boundary of the domain”, Mat. Sb., 204:7 (2013),  25–46  mathnet  mathscinet  zmath  elib; Sb. Math., 204:7 (2013), 958–978  isi  scopus 2
2011
3. B. V. Bazaliy, S. P. Degtyarev, “Classical solution of a degenerate elliptic-parabolic free boundary problem”, Zh. Mat. Fiz. Anal. Geom., 7:4 (2011),  295–332  mathnet  mathscinet  zmath  isi 1
2010
4. S. P. Degtyarev, “The solvability of the first initial-boundary problem for parabolic and degenerate parabolic equations in domains with a conical point”, Mat. Sb., 201:7 (2010),  67–98  mathnet  mathscinet  zmath  elib; Sb. Math., 201:7 (2010), 999–1028  isi  elib  scopus 7
2008
5. S. P. Degtyarev, “Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption”, Mat. Sb., 199:4 (2008),  37–64  mathnet  mathscinet  zmath  elib; Sb. Math., 199:4 (2008), 511–538  isi  scopus 5
2007
6. S. P. Degtyarev, A. F. Tedeev, “$L_1$$L_\infty$ estimates of solutions of the Cauchy problem for an anisotropic degenerate parabolic equation with double non-linearity and growing initial data”, Mat. Sb., 198:5 (2007),  45–66  mathnet  mathscinet  zmath  elib; Sb. Math., 198:5 (2007), 639–660  isi  scopus 18
1987
7. B. V. Bazalii, S. P. Degtyarev, “On classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompressible fluid”, Mat. Sb. (N.S.), 132(174):1 (1987),  3–19  mathnet  mathscinet  zmath; Math. USSR-Sb., 60:1 (1988), 1–17 20
1986
8. B. V. Bazalii, S. P. Degtyarev, “Classical solvability of the nonstationary Stefan problem with convection”, Dokl. Akad. Nauk SSSR, 287:1 (1986),  20–24  mathnet  mathscinet  zmath

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024