Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 4, Pages 511–538
DOI: https://doi.org/10.1070/SM2008v199n04ABEH003931
(Mi sm3859)
 

This article is cited in 5 scientific papers (total in 5 papers)

Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption

S. P. Degtyarev

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
References:
Abstract: Instantaneous support shrinking is studied for a doubly non-linear degenerate parabolic equation in the case of slow diffusion when, in general, the Cauchy initial data are Radon measures. For a non-negative solution, a necessary and sufficient condition for instantaneous support shrinking is obtained in terms of the local behaviour of the mass of the initial data. In the same terms, estimates are obtained for the size of the support, that are sharp with respect to order.
Bibliography: 24 titles.
Received: 19.04.2007 and 04.10.2007
Bibliographic databases:
UDC: 517.956.45
MSC: 35K55, 35K65
Language: English
Original paper language: Russian
Citation: S. P. Degtyarev, “Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption”, Sb. Math., 199:4 (2008), 511–538
Citation in format AMSBIB
\Bibitem{Deg08}
\by S.~P.~Degtyarev
\paper Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a~doubly non-linear parabolic equation with absorption
\jour Sb. Math.
\yr 2008
\vol 199
\issue 4
\pages 511--538
\mathnet{http://mi.mathnet.ru//eng/sm3859}
\crossref{https://doi.org/10.1070/SM2008v199n04ABEH003931}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2410139}
\zmath{https://zbmath.org/?q=an:1172.35036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257185400010}
\elib{https://elibrary.ru/item.asp?id=20359320}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48049093441}
Linking options:
  • https://www.mathnet.ru/eng/sm3859
  • https://doi.org/10.1070/SM2008v199n04ABEH003931
  • https://www.mathnet.ru/eng/sm/v199/i4/p37
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024