Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Sheftel, Mikhail Borisovich

Statistics Math-Net.Ru
Total publications: 10
Scientific articles: 10
Presentations: 1

Number of views:
This page:570
Abstract pages:2625
Full texts:994
References:378
Doctor of physico-mathematical sciences
E-mail: , ,

https://www.mathnet.ru/eng/person19337
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/209967

Publications in Math-Net.Ru Citations
2018
1. Mikhail B. Sheftel, Devrim Yazici, “Evolutionary Hirota Type $(2+1)$-Dimensional Equations: Lax Pairs, Recursion Operators and Bi-Hamiltonian Structures”, SIGMA, 14 (2018), 017, 19 pp.  mathnet  isi  scopus 3
2016
2. Mikhail B. Sheftel, Devrim Yazici, “Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański”, SIGMA, 12 (2016), 091, 17 pp.  mathnet  isi  scopus 9
2013
3. Mikhail B. Sheftel, Andrei A. Malykh, “Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors”, SIGMA, 9 (2013), 075, 21 pp.  mathnet  mathscinet  isi  scopus 6
2011
4. Andrei A. Malykh, Mikhail B. Sheftel, “Recursions of Symmetry Orbits and Reduction without Reduction”, SIGMA, 7 (2011), 043, 13 pp.  mathnet  mathscinet  isi  scopus 5
2003
5. M. B. Sheftel, “Method of Group Foliation, Hodograph Transformation, and Noninvariant Solutions of the Heavenly Equation”, TMF, 137:3 (2003),  457–468  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 137:3 (2003), 1743–1752  isi 3
2001
6. Y. Nutku, M. B. Sheftel, “Group Foliation Approach to the Complex Monge–Ampére Equation”, TMF, 127:3 (2001),  465–474  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 127:3 (2001), 808–816  isi 2
1994
7. M. B. Sheftel, “Group analysis of defining equations – a method for finding recursion operators”, Differ. Uravn., 30:3 (1994),  444–456  mathnet  mathscinet; Differ. Equ., 30:3 (1994), 412–423 1
1993
8. M. B. Sheftel, “Higher integrals and symmetries of semi-Hamiltonian systems”, Differ. Uravn., 29:10 (1993),  1782–1795  mathnet  mathscinet; Differ. Equ., 29:10 (1993), 1548–1560 1
1986
9. M. B. Sheftel, “Integration of Hamiltonian systems of hydrodynamic type with two dependent variables with the aid of the Lie–Bäcklund group”, Funktsional. Anal. i Prilozhen., 20:3 (1986),  70–79  mathnet  mathscinet  zmath; Funct. Anal. Appl., 20:3 (1986), 227–235  isi 10
1983
10. M. B. Sheftel, “On the infinite-dimensional noncommutative Lie–Bäcklund algebra associated with the equations of one-dimensional gas dynamics”, TMF, 56:3 (1983),  368–386  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 56:3 (1983), 878–891  isi 9

Presentations in Math-Net.Ru
1. Nonlocal symmetry of CMA generates ASD Ricci-flat metric with no Killing vectors
M. B. Sheftel
Cohomological geometry of differential equations
November 4, 2020 19:20   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024