K. Kozlowski, J. M. Maillet, N. A. Slavnov, “Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas”, J. Stat. Mech. Theory Exp., 2011, P03018 , 38 pp.
N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions”, J. Stat. Mech. Theory Exp., 2009, no. 4, P04003 , 66 pp.
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Master equation for spin-spin correlation functions of the $XXZ$ chain”, Nuclear Phys. B, 712:3 (2005), 600–622
A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, “Differential equations for quantum correlation function”, Internat. J. Modern Phys. B, 4:5 (1990), 1003–1037
N. A. Slavnov, “Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz”, Theoret. and Math. Phys., 79:2 (1989), 502–508
Samuel Belliard, Rodrigo Alves Pimenta, Nikita A. Slavnov, “Modified rational six vertex model on the rectangular lattice”, SciPost Phys., 16:1 (2024), 9 , 20 pp., arXiv: 2310.05850;
N. A. Slavnov, “Algebraic Bethe ansatz approach to the correlation functions of the one-dimensional bosons with attraction”, JHEP, 2024 (2024), 61 , 34 pp., arXiv: 2403.06882;
3.
G. Kulkarni, N. A. Slavnov, “Form factors of local operators in the generalized algebraic Bethe ansatz”, Theoret. and Math. Phys., 221:2 (2024), 1940–1958 , arXiv: 2308.15748
2023
4.
G. Kulkarni, N. A. Slavnov, “Action of the monodromy matrix elements in the generalized algebraic Bethe ansatz”, Theoret. and Math. Phys., 217:3 (2023), 1889–1906
5.
G. Kulkarni, N. A. Slavnov, “Scalar products of Bethe vectors in the generalized algebraic Bethe ansatz”, Theoret. and Math. Phys., 217:1 (2023), 1574–1594 , arXiv: 2306.12932
2022
6.
N.A. Slavnov, Algebraic Bethe Ansatz and Correlation Functions, World Scientific, Singapore, 2022 , 400 pp.
Samuel Belliard, Rodrigo A. Pimenta, Nikita A. Slavnov, “Scalar product for the XXZ spin chain with general integrable boundaries”, J. Phys. A, 54:34 (2021), 344001 , 15 pp., arXiv: 2103.12501;
N. A. Slavnov, Theoret. and Math. Phys., 204:3 (2020), 1216–1226
11.
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors”, J. Stat. Mech., 2020, 93104 , 31 pp. ;
N. A. Slavnov, “Introduction to the Algebraic Bethe Ansatz”, Geometric Methods in Physics XXXVIII (Białowieza, Poland, 2019), Trends Math., eds. P. Kielanowski, A. Odzijewicz, E. Previato, Birkhäuser, Cham, 2020, 363–371;
13.
N. A. Slavnov, “Introduction to the nested algebraic Bethe ansatz”, SciPost Phys. Lect. Notes, 19 (2020), 1–53 , arXiv: 1911.12811;
Sovremennye problemy matematicheskoi i teoreticheskoi fiziki, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Andreya Alekseevicha Slavnova, Trudy MIAN, 309, ed. A. K. Pogrebkov, N. A. Slavnov, A. A. Belavin, A. V. Zotov, I. V. Tyutin, MIAN, M., 2020 , 346 pp.
2019
15.
A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “New symmetries of ${\mathfrak{gl}(N)}$-invariant Bethe vectors”, J. Stat. Mech., 2019 (2019), 044001 , 24 pp., arXiv: 1810.00364
A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors for orthogonal integrable models”, Theoret. and Math. Phys., 201:2 (2019), 1543–1562 , arXiv: 1906.03202
17.
S. Belliard and N. A. Slavnov, “Scalar Products in Twisted XXX Spin Chain. Determinant Representation”, SIGMA, 15 (2019), 066 , 30 pp., arXiv: 1906.06897
S. Belliard, N. A. Slavnov, “Why scalar products in the algebraic Bethe ansatz have determinant representation”, JHEP, 2019:10 (2019), 103 , 17 pp., arXiv: 1908.00032
A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Norm of Bethe vectors in models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 926 (2018), 256–278 , arXiv: 1705.09219
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4 (2018), 6 , 30 pp., arXiv: 1711.03867
A. Liashyk, N. A. Slavnov, “On Bethe vectors in $\mathfrak{gl}_3$-invariant integrable models”, Journal of High Energy Physics, 2018, 2018:18 , 31 pp., arXiv: 1803.07628
S. Belliard, N. A. Slavnov, B. Vallet, “Scalar product of twisted XXX modified Bethe vectors”, J. Stat. Mech., 2018:9 (2018), 93103 , 28 pp., arXiv: 1805.11323
N. A. Slavnov, “Determinant representations for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 197:3 (2018), 1771–1778
2017
26.
A. A. Hutsalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors”, Russian Math. Surveys, 72:1 (2017), 33–99
27.
A. A. Hutsalyuk, A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A, 50:3 (2017), 34004 , 22 pp., arXiv: 1606.03573
Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Bethe vectors for models based on the super-Yangian $Y(gl(m|n))$”, J. Integrab. Syst., 2 (2017), 1–31 , arXiv: 1604.02311
J. Fuksa, N. A. Slavnov, “Form factors of local operators in supersymmetric quantum integrable models”, J. Stat. Mech., 2017, 43106 , 21 pp., arXiv: 1701.05866
N. A. Slavnov, “Algebraic Bethe ansatz”, Lekts. Kursy NOC, 27, Steklov Math. Institute of RAS, Moscow, 2017, 3–189
31.
A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 923 (2017), 277–311 , arXiv: 1704.08173
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 99 , 22 pp., arXiv: 1605.06419
A. Hustalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models”, Nuclear Phys. B, 911 (2016), 902–927 , arXiv: 1607.04978
N. A. Slavnov, “Multiple commutation relations in the models with $\mathfrak gl(2|1)$ symmetry”, Theoret. and Math. Phys., 189:2 (2016), 1624–1644
35.
A. Hustalyuk, A. Liashyk, S. Pakulyak, E. Ragoucy, N. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry. 1. Super-analog of Reshetikhin formula”, J. Phys. A, 49:45 (2016), 454005 , 28 pp., arXiv: 1605.09189
Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators”, SIGMA, 11 (2015), 064 , 18 pp., arXiv: 1502.01966
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Zero modes method and form factors in quantum integrable models”, Nuclear Phys. B, 893 (2015), 459–481 , arXiv: 1412.6037
N. A. Slavnov, “Scalar products in $GL(3)$-based models with trigonometric $R$-matrix. Determinant representation”, J. Stat. Mech. Theory Exp., 2015, no. 03, P03019 , 25 pp., arXiv: 1501.06253
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors of local operators in a one-dimensional two-component Bose gas”, J. Phys. A, 48:43 (2015), 435001 , 21 pp., arXiv: 1503.00546
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of quantum integrable models based on $U_q(\widehat{\mathfrak{gl}}_N)$”, J. Phys. A, 47 (2014), 105202 , 16 pp., arXiv: 1310.3253
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors in quantum integrable models with $GL(3)$-invariant $R$-matrix”, Nucl. Phys. B, 881 (2014), 343–368 , arXiv: 1312.1488
S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient”, Theoret. and Math. Phys., 178:3 (2014), 314–335 , arXiv: 1311.3500
45.
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with the $GL(3)$ thigonometric $R$-matrix: general case”, Theoret. and Math. Phys., 180:1 (2014), 795–814 , arXiv: 1401.4355
46.
S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Determinant representations for form factors in quantum integrable models with the $GL(3)$-invariant $R$-matrix”, Theoret. and Math. Phys., 181:3 (2014), 1566–1584 , arXiv: 1406.5125
2013
47.
N. A. Slavnov, “Asymptotic expansions for correlation functions of one-dimensional bosons”, Theoret. and Math. Phys., 174:1 (2013), 109–121
48.
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of $GL(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013, no. 2, P02020 , 24 pp., arXiv: 1210.0768
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors in $SU(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013, no. 4, P04033 , 16 pp., arXiv: 1211.3968
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe Vectors of Quantum Integrable Models with GL(3) Trigonometric R-Matrix”, SIGMA, 9 (2013), 058 , 23 pp., arXiv: 1304.7602
N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “Form factor approach to dynamical correlation functions in critical models”, J. Stat. Mech. Theory Exp., 2012, P09001 , 33 pp., arXiv: 1206.2630
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Highest coefficient of scalar products in SU(3)-invariant integrable models”, J. Stat. Mech. Theory Exp., 2012, P09003 , 17 pp., arXiv: 1206.4931
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “The algebraic Bethe ansatz for scalar products in SU(3)-invariant integrable models”, J. Stat. Mech. Theory Exp., 2012, P10017 , 25 pp., arXiv: 1207.0956
N. A. Slavnov, “Form factor approach to the Calculation of correlation functions of integrable models”, Geometric methods in physics (Bialowieza, Poland, June 24–30, 2012), Trends in Mathematics, eds. P. Kielanowski, S. Twareque Ali, A. Odesskii, A. Odzijewicz, M. Schlichenmaier, T. Voronov, Springer, Basel, 2012, 209–220
2011
55.
N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “The thermodynamic limit of particle-hole form factors in the massless $XXZ$ Heisenberg chain”, J. Stat. Mech. Theory Exp., 2011, P05028 , 34 pp.
K. Kozlowski, J. M. Maillet, N. A. Slavnov, “Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas”, J. Stat. Mech. Theory Exp., 2011, P03018 , 38 pp.
K. Kozlowski, J. M. Maillet, N. A. Slavnov, “Correlation functions of one-dimensional bosons at low temperature”, J. Stat. Mech. Theory Exp., 2011, P03019 , 25 pp.
N. A. Slavnov, Introduction to the theory of quantum integrable systems. Quantum nonlinear Schrödinger equation, Lekts. Kursy NOC, 18, Steklov Math. Inst., RAS, Moscow, 2011 , 120 pp.
59.
N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “A form factor approach to the asymptotic behavior of correlation functions”, J. Stat. Mech. Theory Exp., 2011, P12010 , 28 pp., arXiv: hep-th/1110.0803
N. A. Slavnov, “Integral operators with the generalized sine kernel on the real axis”, Theoret. and Math. Phys., 165:1 (2010), 1262–1274
2009
61.
N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “On the thermodynamic limit of form factors in the massless XXZ Heisenberg chain”, J. Math. Phys., 50:9 (2009), 095209 , 24 pp.
N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “Riemann-Hilbert approach to a generalized sine kernel and applications”, Comm. Math. Phys., 291:3 (2009), 691–761
N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions”, J. Stat. Mech. Theory Exp., 2009, no. 4, P04003 , 66 pp.
N. Kitanine, K. Kozlowski, J. M. Maillet, G. Niccoli, N. A. Slavnov, V. Terras, “Correlation functions of the open $XXZ$ chain. II”, J. Stat. Mech. Theory Exp., 2008, no. 7, P07010 , 33 pp.
N. Kitanine, K. K. Kozlowski, J. M. Maillet, G. Niccoli, N. A. Slavnov, V. Terras, “Correlation functions of the open $XXZ$ chain. I”, J. Stat. Mech. Theory Exp., 2007, no. 10, P10009 , 37 pp.
N. A. Slavnov, “The algebraic Bethe ansatz and quantum integrable systems”, Russian Math. Surveys, 62:4 (2007), 727–766
67.
N. A. Slavnov, “Correlation functions of the $XXZ$ Heisenberg chain for $\Delta=1/2$”, Theoret. and Math. Phys., 150:2 (2007), 259–265
68.
N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “On correlation functions of integrable models associated to the six-vertex $R$-matrix”, J. Stat. Mech. Theory Exp., 2007, no. 1, P01022 , 17 pp.
J.-S. Caux, P. Calabrese, N. A. Slavnov, “One-particle dynamical correlations in the one-dimensional Bose gas”, J. Stat. Mech. Theory Exp., 2007, P01008
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “On the algebraic Bethe Ansatz approach to the correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain”, Solvable lattice models, RIMS, Kyoto, 2005, 14–48 , arXiv: hep-th/0505006v1
71.
N. A. Slavnov, “On Scalar Products in the Algebraic Bethe Ansatz”, Proc. Steklov Inst. Math., 251 (2005), 246–253
72.
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Master equation for spin-spin correlation functions of the $XXZ$ chain”, Nuclear Phys. B, 712:3 (2005), 600–622
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Dynamical correlation functions of the $XXZ$ spin-$1/2$ chain”, Nuclear Phys. B, 729:3 (2005), 558–580
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “On the spin-spin correlation functions of the $XXZ$ spin-$\frac12$ infinite chain”, J. Phys. A, 38:34 (2005), 7441–7460
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Exact results for the $\sigma^2$ two-point function of the $XXZ$ chain at $\Delta=1/2$”, J. Stat. Mech. Theory Exp., 2005, no. 9, L09002 , 7 pp.
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain: recent advances”, Proceedings of 6th International Workshop on Conformal Field Theory and Integrable Models, Internat. J. Modern Phys. A, 19, no. May, suppl., 2004, 248–266
N. A. Slavnov, “Emptiness Formation Probability in the Spin-1/2 $XXZ$ Heisenberg Chain”, Theoret. and Math. Phys., 139:1 (2004), 529–535
2003
78.
N. A. Slavnov, “Integral Representations for Correlation Functions of the $XXZ$ Heisenberg Chain”, Theoret. and Math. Phys., 135:3 (2003), 828–835
2002
79.
N. A. Slavnov, “The partition function of the six-vertex model as a Fredholm determinant”, Isomonodromic deformations and applications in physics (Montréal, QC, 2000), CRM Proc. Lecture Notes, 31, Amer. Math. Soc., Providence, RI, 2002, 207–218
80.
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Spin-spin correlation functions of the $XXZ$-$\frac12$ Heisenberg chain in a magnetic field”, Nuclear Phys. B, 641 (2002), 487–518
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain at the free fermion point from their multiple integral representations”, Nuclear Phys. B, 642:3 (2002), 433–455
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Emptiness formation probability of the $XXZ$ spin-$\frac12$ Heisenberg chain at $\Delta=\frac12$”, J. Phys. A, 35:27 (2002), L385–L388
N. Kitanine, J. M. Maillet, N.A. Slavnov, V. Terras, “Large distance asymptotic behavior of the emptiness formation probability of the $XXZ$ spin-$\frac12$ Heisenberg chain”, J. Phys. A, 35:49 (2002), L753–L758
N. Kitanine A., N. A. Slavnov, “The algebraic Bethe ansatz and the correlation functions of the Heisenberg magnet”, Integrable structures of exactly solvable two-dimensional models of quantum field theory (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35, Kluwer Acad. Publ., Dordrecht, 2001, 243–264
2000
85.
V. Korepin, N. Slavnov, “Quantum inverse scattering method and correlation functions”, L. D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000, 115–121
86.
N. A. Slavnov, “A nonlinear identity for the scattering phase of integrable models”, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years after NEEDS '79 (Gallipoli, 1999), eds. M. Boiti et al., World Sci. Publ., River Edge, NJ, 2000, 196–202
2003
87.
N. A. Slavnov, “Fredholm determinant representation for the partition function of the six-vertex model”, J. Math. Sci. (N. Y.), 115:1 (2003), 2058–2065
2000
88.
H. Frahm, N. A. Slavnov, “Magnetic properties of doped Heisenberg chains”, Nuclear Phys. B, 575:3 (2000), 485–503
V. E. Korepin, N. A. Slavnov, “A closed expression for quantum correlation functions of exactly solvable models of quantum field theory”, Path integrals from peV to TeV (Florence, 1998), World Sci. Publ., River Edge, NJ, 1999, 71–79
90.
V. E. Korepin, N. A. Slavnov, “Form factors in the finite volume” (Torino, 1998), Internat. J. Modern Phys. B, Proceedings of the Euroconference on New Symmetries in Statistical Mechanics and Condensed Matter Physics, 13, no. 24-25, 1999, 2933–2941
V. Korepin, N. Slavnov, “Thermodynamics of quantum nonlinear Schrödinger equation”, XIIth International Congress of Mathematical Physics (ICMP '97) (Brisbane), Int. Press, Cambridge, MA, 1999, 345–349
92.
V. E. Korepin, N. A. Slavnov, “The Form Factors in a Finite Volume”, Proc. Steklov Inst. Math., 226 (1999), 72–85
93.
N. A. Slavnov, “Integral equations for correlation functions of a quantum one-dimensional Bose gas”, Theoret. and Math. Phys., 121:1 (1999), 1358–1376
94.
A. R. Its, N. A. Slavnov, “On the Riemann–Hilbert approach to asymptotic analysis of the correlation functions of the quantum nonlinear Schrödinger equation: Interacting fermion case”, Theoret. and Math. Phys., 119:2 (1999), 541–593
95.
H. Frahm, N. A. Slavnov, “New solutions to the reflection equation and the projecting method”, J. Phys. A, 32:9 (1999), 1547–1555
V. E. Korepin, N. A. Slavnov, “The determinant representation for quantum correlation functions of the sinh-Gordon model”, J. Phys. A, 31:46 (1998), 9283–9295
N. A. Slavnov, “A nonlinear identity for the scattering phase of integrable models”, Theoret. and Math. Phys., 116:3 (1998), 1021–1023
2001
98.
N. A. Slavnov, “Asymptotics of the Fredholm determinant associated with the correlation functions of the quantum nNonlinear Schrödinger equation”, J. Math. Sci. (New York), 104:3 (2001), 1135–1143
1998
99.
V. Korepin, N. Slavnov, “The new identity for the scattering matrix of exactly solvable models”, Eur. Phys. J. B Condens. Matter Phys., 5:3 (1998), 555–557
N. A. Slavnov, “On an identity for dual fields”, J. Math. Sci. (New York), 100:2 (2000), 2181–2188
1997
101.
T. Kojima, V. E. Korepin, N. A. Slavnov, “Determinant representation for dynamical correlation function of the quantum Nonlinear Schrödinger equation”, Comm. Math. Phys., 188:3 (1997), 657–689
T. Kojima, V. E. Korepin, N. A. Slavnov, “Completely integrable equation for the quantum correlation function of nonlinear Schrödinger equation”, Comm. Math. Phys., 189:3 (1997), 709–728
V. E. Korepin, N. A. Slavnov, “The Riemann–Hilbert problem associated with the quantum nonlinear Schrödinger equation”, J. Phys. A, 30:23 (1997), 8241–8255
V. E. Korepin, N. A. Slavnov, “Time and temperature dependent correlation functions of 1D models of quantum statistical mechanics”, Phys. Lett. A, 236:3 (1997), 201–205
N. A. Slavnov, “Fredholm determinants and $\tau$-functions”, Theoret. and Math. Phys., 109:3 (1996), 1523–1535
107.
N. A. Slavnov, “Cancellation of dual fields in free fermion models with trigonometric $R$-matrix”, Theoret. and Math. Phys., 108:2 (1996), 993–1002
108.
N. A. Slavnov, “Differential equations for multipoint correlation functions in one-dimensional impenetrable bose-gas”, Theoret. and Math. Phys., 106:1 (1996), 131–142
1998
109.
A. G. Izergin, N. A. Kitanin, N. A. Slavnov, “On correlation functions of the $XY$ model”, J. Math. Sci. (New York), 88:2 (1998), 224–232
1995
110.
A. G. Izergin, A. R. Its, V. E. Korepin, N. A. Slavnov, “The matrix Riemann–Hilbert problem and differential equations for correlation functions of the $XXO$ Heisenberg chain”, St. Petersburg Math. J., 6:2 (1995), 315–326
1993
111.
Its A. R., Izergin A. G., Korepin V. E., N. A. Slavnov, “The quantum correlation function as the $\tau$ function of classical differential equations”, Important developments in soliton theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, 407–417
A. G. Izergin, A. R. Its, V. E. Korepin, N. A. Slavnov, “Integrable differential equations for temperature correlation functions of the Heisenberg $XXO$ chain”, J. Math. Sci., 80:3 (1996), 1747–1759
1993
113.
A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, “Temperature correlations of quantum spins”, Phys.l Rev. Lett., 70:11 (1993), 1704–1706
Bogoliubov N. M., Korepin V. E., N. A. Slavnov, “Time-temperature correlation functions of densities of one-dimensional Bose gas”, Solitons and applications (Dubna, 1989), World Sci. Publ., River Edge, NJ, 1990, 159–169
116.
N. A. Slavnov, “Nonequal-time current correlation function in a one-dimensional Bose gas”, Theoret. and Math. Phys., 82:3 (1990), 273–282
117.
V. E. Korepin, N. A. Slavnov, “Time dependence correlation function of an impenetrable Bose-gas as a Fredholm minor. I”, Comm. Math. Phys., 129:1 (1990), 103–113
A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, “Differential equations for quantum correlation function”, Internat. J. Modern Phys. B, 4:5 (1990), 1003–1037
V. E. Korepin, N. A. Slavnov, “Time dependence of the density-density temperature correlation function of one-dimensional Bose-gas”, Nuclear Phys. B, 340:2-3 (1990), 759–766
N. A. Slavnov, “Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz”, Theoret. and Math. Phys., 79:2 (1989), 502–508
1987
121.
A. G. Izergin, V. E. Korepin, N. A. Slavnov, “Finite-temperature correlation functions of Heisenberg antiferromagnet”, Theoret. and Math. Phys., 72:2 (1987), 878–884
1986
122.
V. E. Korepin, N. A. Slavnov, “Correlation function of currents in a one-dimensional Bose gas”, Theoret. and Math. Phys., 68:3 (1986), 955–960
Матрицы чередующихся знаков и шестивершинная модель Бакстера N. A. Slavnov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) September 7, 2022 14:00
4.
Opening N. A. Slavnov International Conference "Integrability" Dedicated to 75th Anniversary of A. K. Pogrebkov September 22, 2021 10:00
Nested algebraic Bethe ansatz and correlation functions N. A. Slavnov Conference «Contemporary Mathematics and its applications» dedicated to the results of research supported by the Russian Science Foundation grant 14-50-00005 November 19, 2018 15:50
On the scalar products of Bethe vectors N. A. Slavnov Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS November 15, 2017 14:00
18.
Generalized Gaudin hypothesis N. A. Slavnov Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS March 29, 2017 14:00
XXZ chain and Alternating Sign Matrices N. A. Slavnov Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS October 5, 2005
37.
Корреляционные функции XXZ цепочки Гейзенберга N. A. Slavnov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) July 27, 2005
Dynamical correlation functions N. A. Slavnov Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS February 16, 2005
Modern problems of mathematical and theoretical physics, Collected papers. On the occasion of the 80th birthday of Academician Andrei Alekseevich Slavnov, Trudy Mat. Inst. Steklova, 309, ed. A. K. Pogrebkov, N. A. Slavnov, A. A. Belavin, A. V. Zotov, I. V. Tyutin, 2020, 346 с. http://mi.mathnet.ru/book1783
N. A. Slavnov, Introduction to the theory of quantum integrable systems. Quantum nonlinear Schrödinger equation, Lekts. Kursy NOC, 18, 2011, 120 с. http://mi.mathnet.ru/book1362