Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Egorov, Alexandr Ivanovich

Statistics Math-Net.Ru
Total publications: 22
Scientific articles: 22
Presentations: 1

Number of views:
This page:1830
Abstract pages:6245
Full texts:2778
References:780
Professor
Doctor of physico-mathematical sciences (1971)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 19.10.1930
E-mail:
Keywords: riccati equations; cost function; distributed-parameter systems; boundary control; Bellman equations.
   
Main publications:
  • Egorov A.I. Optimalnye protsessy v sistemakh s raspredelennymi parametrami i nekotorye zadachi teorii invariantnosti // Izv. AN SSSR. Ser. matem. T. 29. Vyp. 6. 1965. S. 1205–1256.
  • Egorov A.I. Usloviya optimalnosti sistem, soderzhaschikh zvenya s raspredelennymi parametrami // DAN SSSR. T. 171. # 6. 1966. S. 1361–1363.
  • Egorov A.I. Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami. M.: Nauka. 1978. 468 s.
  • Egorov A.I. Optimalnoe upravlenie lineinymi sistemami. Kiev: Vyscha shkola. 1988. 278 s.
  • Egorov A.I. Uravneniya Rikkati. M.: Nauka. 2001. 328 s.

https://www.mathnet.ru/eng/person17997
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/209072

Publications in Math-Net.Ru Citations
2017
1. A. I. Egorov, L. N. Znamenskaya, “Control of a heat conduction process with a quadratic cost functional”, Zh. Vychisl. Mat. Mat. Fiz., 57:12 (2017),  2053–2064  mathnet  elib; Comput. Math. Math. Phys., 57:12 (2017), 2005–2016  isi  scopus
2012
2. A. I. Egorov, L. N. Znamenskaya, “Boundary observability of elastic vibrations in a system of sequentially connected strings”, Zh. Vychisl. Mat. Mat. Fiz., 52:9 (2012),  1614–1620  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 52:9 (2012), 1233–1238  isi  elib  scopus
2011
3. A. I. Egorov, L. N. Znamenskaya, “On the controllability of elastic oscillations of serially connected objects with distributed parameters”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  85–92  mathnet  elib 5
4. A. I. Egorov, L. N. Znamenskaya, “Observability of oscillations of a network from the connected objects with the distributed and concentrated parameters in a point of connection”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 1,  142–146  mathnet 1
2010
5. A. I. Egorov, L. N. Znamenskaya, “Observability of elastic oscillations of the network with distributed and concentrated parameters on free boundaries”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  76–81  mathnet  elib 1
2009
6. A. I. Egorov, L. N. Znamenskaya, “State observability of elastic vibrations in distributed and lumped parameter systems”, Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009),  1779–1784  mathnet; Comput. Math. Math. Phys., 49:10 (2009), 1700–1705  isi  scopus 1
7. A. I. Egorov, L. N. Znamenskaya, “Controllability of vibrations of a net of coupled objects with distributed and lumped parameters”, Zh. Vychisl. Mat. Mat. Fiz., 49:5 (2009),  815–825  mathnet  zmath; Comput. Math. Math. Phys., 49:5 (2009), 786–796  isi  scopus 6
2008
8. A. I. Egorov, “Observability of elastic vibrations of a beam”, Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008),  967–973  mathnet  zmath; Comput. Math. Math. Phys., 48:6 (2008), 912–917  isi  scopus 4
2007
9. A. I. Egorov, L. N. Znamenskaya, “On boundary observability of elastic vibrations of connected objects with distributed and lumped parameters”, Avtomat. i Telemekh., 2007, no. 2,  95–102  mathnet  mathscinet  zmath; Autom. Remote Control, 68:2 (2007), 296–302  scopus 7
2006
10. A. I. Egorov, L. N. Znamenskaya, “Two-end controllability of elastic vibrations of systems with distributed and lumped parameters”, Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006),  2032–2044  mathnet  mathscinet; Comput. Math. Math. Phys., 46:11 (2006), 1940–1952  scopus 9
11. A. I. Egorov, L. N. Znamenskaya, “Controllability of vibrations of a system of objects with distributed and lumped parameters”, Zh. Vychisl. Mat. Mat. Fiz., 46:6 (2006),  1002–1018  mathnet  mathscinet; Comput. Math. Math. Phys., 46:6 (2006), 955–970  scopus 6
2005
12. A. I. Egorov, L. N. Znamenskaya, “Control of vibrations of coupled objects with distributed and lumped parameters”, Zh. Vychisl. Mat. Mat. Fiz., 45:10 (2005),  1766–1784  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:10 (2005), 1701–1718 7
1987
13. A. I. Egorov, “Finsler spaces and Davies spaces of second lacunarity”, Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 3,  25–28  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 31:3 (1987), 33–37
1985
14. A. I. Egorov, “On the problem of the distribution of gaps in the orders of the full groups of motions of general path spaces”, Mat. Sb. (N.S.), 127(169):2(6) (1985),  259–271  mathnet  mathscinet  zmath; Math. USSR-Sb., 55:1 (1986), 259–271
1984
15. A. I. Egorov, “Maximally mobile spaces of hyperplane elements with a general affine connection”, Mat. Sb. (N.S.), 125(167):2(10) (1984),  167–180  mathnet  mathscinet  zmath; Math. USSR-Sb., 53:1 (1986), 169–182
1981
16. A. I. Egorov, “Lacunary Finsler spaces”, Mat. Sb. (N.S.), 116(158):3(11) (1981),  310–314  mathnet  mathscinet  zmath; Math. USSR-Sb., 44:3 (1983), 279–282 2
1972
17. A. I. Egorov, R. Rafatov, “Approximate solution of a certain problem of optimal control”, Zh. Vychisl. Mat. Mat. Fiz., 12:4 (1972),  943–959  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 12:4 (1972), 123–140 1
18. A. I. Egorov, “Conditions for optimality in a certain problem of control of a heat transfer process”, Zh. Vychisl. Mat. Mat. Fiz., 12:3 (1972),  791–799  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 12:3 (1972), 289–298
1966
19. A. I. Egorov, “Conditions for optimality of systems containing links with distributed parameters”, Dokl. Akad. Nauk SSSR, 171:6 (1966),  1261–1263  mathnet  mathscinet  zmath
20. A. I. Egorov, “Necessary optimal conditions for systems with distributed parameters”, Mat. Sb. (N.S.), 69(111):3 (1966),  371–421  mathnet  mathscinet  zmath 3
1965
21. A. I. Egorov, “Optimal processes in systems with distributed parameters and certain problems of the theory of invariance”, Izv. Akad. Nauk SSSR Ser. Mat., 29:6 (1965),  1205–1260  mathnet  mathscinet  zmath 10
1964
22. A. I. Egorov, “A variational problem in the theory of equations of elliptic type”, Sibirsk. Mat. Zh., 5:3 (1964),  500–508  mathnet  mathscinet  zmath

Presentations in Math-Net.Ru
1. Решение дифференциальных уравнений и теорема Коши
A. I. Egorov

April 22, 2021 17:15

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024