Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Grishin, Anatoly Filippovich

Statistics Math-Net.Ru
Total publications: 11
Scientific articles: 11

Number of views:
This page:1685
Abstract pages:4025
Full texts:1457
References:520
Professor
Doctor of physico-mathematical sciences (1992)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date: 9.09.1941
E-mail:
Keywords: asymtotic methods in analysis; theory of growth holomorphic and subharmonic functions; theory of integral equations.

Subject:

It is obtained an estimate of remainder term and uniform asymptotic expansion of integrals along curves beginning at $z_0$ that is in neighborhood of a critical point. Integrands depend on parameter. The asymptotic modulus of continuity $\omega(z,h)=|z|^{-\rho}(v(z+hz)-v(z))$ of subgarmonic function $v$ of order $\rho$ was estimated. I was introduced the class of entire functions having regular growth on the set their zeros. It was proved that such functions are divisors of entire functions of completely regular growth in the sense of Levin and Pfluger. On this basis the criterion of solvability of the free interpolation problem was founded for the class of entire functions with given indicator. It is introduced the concept of complete measure for a spread class of subgarmonic functions in the complex half-plane. For these functions complete measure play the same role as Riesz measure for subharmonic functions in whole plane. Using complete measure I and M. A. Favorov proved the version of the second main theorem for meromorphic functions in the half-plane. The question was open after work of R. Nevanlinna (1925).

Biography

Graduated from Faculty of Mathematics and Mechanics of Kharkov State University in 1963 (department of mathematical analysis). Ph.D. thesis was defended in 1970 (advisor B. Ja. Levin). D.Sci. thesis was defended in 1992. A list of my works contains mare than 20 titles. Since 1998 I and S. Ju. Favorov have led the Kharkov's seminar on the theory of functions.

   
Main publications:
  • Fedorov M. A., Grishin A. F. Some questions of the Nevanlinna theory for the complex half-plane. Kluwer Academic Publishers, Mathematical Physics, Analysis and Geometry, 1998, 1(3), 223–271.
  • Grishin A. F., Malyutina T. I. General properties of subharmonic functions of finite order in a complex half-plane // Вестник Харьковского национального университета. Серия Математика, прикладная математика и механика, 2000, 475(49), 20–44.

https://www.mathnet.ru/eng/person17951
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/202224

Publications in Math-Net.Ru Citations
2015
1. O. A. Bozhenko, A. F. Grishin, K. G. Malyutin, “An interpolation problem in the class of entire functions of zero order”, Izv. RAN. Ser. Mat., 79:2 (2015),  21–44  mathnet  mathscinet  zmath  elib; Izv. Math., 79:2 (2015), 233–256  isi  scopus 1
2014
2. A. F. Grishin, I. V. Poedintseva, “Abelian and Tauberian theorems for integrals”, Algebra i Analiz, 26:3 (2014),  1–88  mathnet  mathscinet  elib; St. Petersburg Math. J., 26:3 (2015), 357–409  isi 5
3. A. F. Grishin, Nguyen Van Quynh, “Entire functions with preassigned zero proximate order”, Zap. Nauchn. Sem. POMI, 424 (2014),  141–153  mathnet  mathscinet; J. Math. Sci. (N. Y.), 209:5 (2015), 753–760  scopus 1
2010
4. A. F. Grishin, O. F. Krizhanovskii, “Экстремальная задача для матриц и теорема Безиковича о покрытии”, Mat. Pros., Ser. 3, 14 (2010),  196–203  mathnet
2008
5. A. Chouigui, A. F. Grishin, “A property of Azarin's limit set of subharmonic functions”, Zh. Mat. Fiz. Anal. Geom., 4:3 (2008),  346–357  mathnet  mathscinet  zmath  isi  elib
6. A. F. Grishin, A. Chouigui, “Various types of convergence of sequences of $\delta$-subharmonic functions”, Mat. Sb., 199:6 (2008),  27–48  mathnet  mathscinet  zmath  elib; Sb. Math., 199:6 (2008), 811–832  isi  scopus
2005
7. A. F. Grishin, T. I. Malyutina, “New formulas for inidicators of subharmonic functions”, Mat. Fiz. Anal. Geom., 12:1 (2005),  25–72  mathnet  mathscinet  zmath 6
2004
8. A. F. Grishin, I. V. Poedintseva, “Towards the Tauberian theorem of Keldysh”, Zap. Nauchn. Sem. POMI, 315 (2004),  63–89  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 134:4 (2006), 2272–2287 5
2003
9. A. F. Grishin, “The Simplest Tauberian Theorem”, Mat. Zametki, 74:2 (2003),  221–229  mathnet  mathscinet  zmath; Math. Notes, 74:2 (2003), 212–219  isi  scopus 2
2000
10. A. F. Grishin, T. I. Malyutina, “Density functions”, Mat. Fiz. Anal. Geom., 7:4 (2000),  387–414  mathnet  mathscinet  zmath
11. A. F. Grishin, S. V. Makarenko, “On a theorem of Yulmukhametov”, Mat. Zametki, 67:6 (2000),  859–862  mathnet  mathscinet  zmath; Math. Notes, 67:6 (2000), 724–726  isi 1

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024