Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 2, Pages 233–256
DOI: https://doi.org/10.1070/IM2015v079n02ABEH002741
(Mi im8064)
 

This article is cited in 1 scientific paper (total in 1 paper)

An interpolation problem in the class of entire functions of zero order

O. A. Bozhenkoa, A. F. Grishinb, K. G. Malyutinba

a Sumy State University
b V. N. Karazin Kharkiv National University
References:
Abstract: We obtain two criteria for the solubility of an ordinary free interpolation problem in the class of entire functions of (non-prescribed) finite type with respect to a zero proximate order $\rho(r)$. We impose only one natural restriction on $\rho(r)$ guaranteeing that the class considered consists not only of polynomials. One criterion is stated in terms of the measure determined by the interpolation nodes, and the other in terms of the canonical product generated by these nodes.
Keywords: zero proximate order, free interpolation, interpolation sequence, canonical product, Dirac measure, Nevanlinna counting function.
Received: 27.10.2012
Revised: 09.04.2014
Bibliographic databases:
Document Type: Article
UDC: 517.538.7
MSC: 30E05, 30D45
Language: English
Original paper language: Russian
Citation: O. A. Bozhenko, A. F. Grishin, K. G. Malyutin, “An interpolation problem in the class of entire functions of zero order”, Izv. Math., 79:2 (2015), 233–256
Citation in format AMSBIB
\Bibitem{BozGriMal15}
\by O.~A.~Bozhenko, A.~F.~Grishin, K.~G.~Malyutin
\paper An interpolation problem in the class of entire functions of zero order
\jour Izv. Math.
\yr 2015
\vol 79
\issue 2
\pages 233--256
\mathnet{http://mi.mathnet.ru//eng/im8064}
\crossref{https://doi.org/10.1070/IM2015v079n02ABEH002741}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3352589}
\zmath{https://zbmath.org/?q=an:06443922}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..233B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353635400002}
\elib{https://elibrary.ru/item.asp?id=23421421}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928732987}
Linking options:
  • https://www.mathnet.ru/eng/im8064
  • https://doi.org/10.1070/IM2015v079n02ABEH002741
  • https://www.mathnet.ru/eng/im/v79/i2/p21
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024