Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Pyvovarchyk, Vyacheslav Nikolaevich

Statistics Math-Net.Ru
Total publications: 18
Scientific articles: 18

Number of views:
This page:856
Abstract pages:5066
Full texts:2315
References:590
Associate professor
Candidate of physico-mathematical sciences (1981)
Speciality: 01.04.02 (Theoretical physics)
Birth date: 26.11.1950
E-mail:
Keywords: inverse problems; Sturm–Liouville equation with boundary conditions dependent on the spectral parameter; Schroedinger equation on graphs; transversal vibrations of damped strings and beams; spectral theory of polynomial operator pencils; Riesz bases.

Subject:

The inverse Sturm–Liouville problem from three spectra of boundary problems was formulated and solved. Inverse problems for the Sturm–Liouville equation on simple graphs were solved. It was proved that the total algebraic multiplicity of the quadratic operator pencils spectrum located in the right half-plane is invariant under perturbations from certain class. Bases properties of eigenvalues of boundary problems describing damped strings were investigated (in collaboration with A. M. Gomilko).

Biography

Graduated from Faculty of Natural Sciences of E. Lorand Scientific University of Budapest in 1974 (speciality — physicist). Ph.D. thesis was defended in 1981. A list of my works contains more than 60 titles.

   
Main publications:
  • Pivovarchik V. N., van der Mee C. The inverse generalized Regge problem // Inverse Problems, 2001, 17, 1831–1845.
  • Pivovarchik V. N. Inverse problem for the Sturm–Liouville equation on a simple graph // SIAM J. Math. Anal., 2000, 32(4), 801–819.
  • Pivovarchik V. N. Scattering in a loop-shaped waveguide // Operator Theory: Advances and Applications, 2001, 124, 527–543.
  • Pivovarchik V. N. An inverse Sturm–Liouville problem by three spectra // Integral Equations and Operator Theory, 1999, 34, 234–243.
  • Pivovarchik V. N. On positive spectra of one class of polynomial operator pencils // Integral equations and operator theory, 1994, 19, 314–326.

https://www.mathnet.ru/eng/person17925
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/210381

Publications in Math-Net.Ru Citations
2005
1. V. N. Pyvovarchyk, “Ambarzumian's Theorem for a Sturm–Liouville Boundary Value Problem on a Star-Shaped Graph”, Funktsional. Anal. i Prilozhen., 39:2 (2005),  78–81  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 39:2 (2005), 148–151  isi  scopus 28
2002
2. C. Van der Mee, V. N. Pyvovarchyk, “A Sturm–Liouville Inverse Spectral Problem with Boundary Conditions Depending on the Spectral Parameter”, Funktsional. Anal. i Prilozhen., 36:4 (2002),  74–77  mathnet  mathscinet  zmath; Funct. Anal. Appl., 36:4 (2002), 315–317  isi  scopus 20
1999
3. V. N. Pyvovarchyk, “Reconstruction of the Potential of the Sturm–Liouville Equation from Three Spectra of Boundary Value Problems”, Funktsional. Anal. i Prilozhen., 33:3 (1999),  87–90  mathnet  mathscinet  zmath; Funct. Anal. Appl., 33:3 (1999), 233–235  isi 10
1998
4. V. N. Pyvovarchyk, “On the Spectra of Small Vibrations of a String with Viscous Friction at One End”, Funktsional. Anal. i Prilozhen., 32:1 (1998),  78–81  mathnet  mathscinet  zmath; Funct. Anal. Appl., 32:1 (1998), 61–63  isi 4
1997
5. G. M. Gubreev, V. N. Pyvovarchyk, “Spectral Analysis of the Regge Problem with Parameters”, Funktsional. Anal. i Prilozhen., 31:1 (1997),  70–74  mathnet  mathscinet  zmath; Funct. Anal. Appl., 31:1 (1997), 54–57  isi 31
1993
6. V. N. Pyvovarchyk, “Necessary conditions for gyroscopic stabilization in a problem of mechanics”, Mat. Zametki, 53:6 (1993),  89–96  mathnet  mathscinet  zmath; Math. Notes, 53:6 (1993), 622–627  isi 1
7. N. D. Kopachevskii, V. N. Pyvovarchyk, “The sufficient condition for instability of the convective motion of a liquid in an open vessel”, Zh. Vychisl. Mat. Mat. Fiz., 33:1 (1993),  101–118  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 33:1 (1993), 89–102  isi 2
1992
8. V. N. Pyvovarchyk, “Sufficient conditions for a weakly damped pencil to have a simple spectrum”, Sibirsk. Mat. Zh., 33:6 (1992),  201–204  mathnet  mathscinet  zmath; Siberian Math. J., 33:6 (1992), 1131–1134  isi
1991
9. V. N. Pyvovarchyk, “On the total algebraic multiplicity of the spectrum in the right half-plane for a class of quadratic operator pencils”, Algebra i Analiz, 3:2 (1991),  223–230  mathnet  mathscinet  zmath; St. Petersburg Math. J., 3:2 (1992), 447–454
10. V. N. Pyvovarchyk, “Polynomial operator pencils connected with problems of mechanics”, Funktsional. Anal. i Prilozhen., 25:4 (1991),  62–64  mathnet  mathscinet  zmath; Funct. Anal. Appl., 25:4 (1991), 281–282  isi
1990
11. V. N. Pyvovarchyk, “A spectral problem that is connected with an equation of viscous sound”, Differ. Uravn., 26:9 (1990),  1536–1541  mathnet  mathscinet; Differ. Equ., 26:9 (1990), 1133–1137
12. V. N. Pyvovarchyk, “Closedness of the approximate spectrum of a polynomial operator pencil”, Mat. Zametki, 47:6 (1990),  147–148  mathnet  mathscinet  zmath
13. V. N. Pyvovarchyk, “The discrete spectrum of a boundary value problem”, Sibirsk. Mat. Zh., 31:5 (1990),  182–186  mathnet  mathscinet  zmath; Siberian Math. J., 31:5 (1990), 853–856  isi 1
1989
14. V. N. Pyvovarchyk, “Eigenvalues of a certain quadratic pencil of operators”, Funktsional. Anal. i Prilozhen., 23:1 (1989),  80–81  mathnet  mathscinet  zmath; Funct. Anal. Appl., 23:1 (1989), 70–72  isi 11
15. V. N. Pyvovarchyk, “The spectrum of quadratic operator pencils in the right half-plane”, Mat. Zametki, 45:6 (1989),  101–103  mathnet  mathscinet  zmath
1988
16. V. N. Pivovarchik, “On the number of eigenvalues of the Sturm–Liouville problem on the semiaxis with a potential that is linear with respect to the parameter”, Differ. Uravn., 24:4 (1988),  705–708  mathnet  mathscinet  zmath
1987
17. V. N. Pyvovarchyk, “The discrete spectrum of a problem connected with wave propagation in an inhomogeneous medium with viscous friction”, Differ. Uravn., 23:9 (1987),  1533–1538  mathnet  mathscinet
18. V. N. Pyvovarchyk, “A boundary value problem connected with oscillations of an elastic rod with internal and external friction”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 3,  68–71  mathnet  mathscinet  zmath 4

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024