Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 2, Pages 78–81
DOI: https://doi.org/10.4213/faa44
(Mi faa44)
 

This article is cited in 28 scientific papers (total in 28 papers)

Brief communications

Ambarzumian's Theorem for a Sturm–Liouville Boundary Value Problem on a Star-Shaped Graph

V. N. Pyvovarchyk

Odessa State Academy of Building and Architecture
References:
Abstract: Ambarzumian's theorem describes the exceptional case in which the spectrum of a single Sturm–Liouville problem on a finite interval uniquely determines the potential. In this paper, an analog of Ambarzumian's theorem is proved for the case of a Sturm–Liouville problem on a compact star-shaped graph. This case is also exceptional and corresponds to the Neumann boundary conditions at the pendant vertices and zero potentials on the edges.
Keywords: inverse problem, Neumann boundary conditions, normal eigenvalue, multiplicity of an eigenvalue, least eigenvalue, minimax principle.
Received: 24.07.2003
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 2, Pages 148–151
DOI: https://doi.org/10.1007/s10688-005-0029-1
Bibliographic databases:
Document Type: Article
UDC: 517.5+517.43
Language: Russian
Citation: V. N. Pyvovarchyk, “Ambarzumian's Theorem for a Sturm–Liouville Boundary Value Problem on a Star-Shaped Graph”, Funktsional. Anal. i Prilozhen., 39:2 (2005), 78–81; Funct. Anal. Appl., 39:2 (2005), 148–151
Citation in format AMSBIB
\Bibitem{Pyv05}
\by V.~N.~Pyvovarchyk
\paper Ambarzumian's Theorem for a Sturm--Liouville Boundary Value Problem on a Star-Shaped Graph
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 2
\pages 78--81
\mathnet{http://mi.mathnet.ru/faa44}
\crossref{https://doi.org/10.4213/faa44}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2161520}
\zmath{https://zbmath.org/?q=an:1118.34304}
\elib{https://elibrary.ru/item.asp?id=14278726}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 2
\pages 148--151
\crossref{https://doi.org/10.1007/s10688-005-0029-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231004800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23744434935}
Linking options:
  • https://www.mathnet.ru/eng/faa44
  • https://doi.org/10.4213/faa44
  • https://www.mathnet.ru/eng/faa/v39/i2/p78
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:797
    Full-text PDF :383
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024