Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 2, Pages 78–81
DOI: https://doi.org/10.4213/faa44
(Mi faa44)
 

This article is cited in 28 scientific papers (total in 28 papers)

Brief communications

Ambarzumian's Theorem for a Sturm–Liouville Boundary Value Problem on a Star-Shaped Graph

V. N. Pyvovarchyk

Odessa State Academy of Building and Architecture
References:
Abstract: Ambarzumian's theorem describes the exceptional case in which the spectrum of a single Sturm–Liouville problem on a finite interval uniquely determines the potential. In this paper, an analog of Ambarzumian's theorem is proved for the case of a Sturm–Liouville problem on a compact star-shaped graph. This case is also exceptional and corresponds to the Neumann boundary conditions at the pendant vertices and zero potentials on the edges.
Keywords: inverse problem, Neumann boundary conditions, normal eigenvalue, multiplicity of an eigenvalue, least eigenvalue, minimax principle.
Received: 24.07.2003
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 2, Pages 148–151
DOI: https://doi.org/10.1007/s10688-005-0029-1
Bibliographic databases:
Document Type: Article
UDC: 517.5+517.43
Language: Russian
Citation: V. N. Pyvovarchyk, “Ambarzumian's Theorem for a Sturm–Liouville Boundary Value Problem on a Star-Shaped Graph”, Funktsional. Anal. i Prilozhen., 39:2 (2005), 78–81; Funct. Anal. Appl., 39:2 (2005), 148–151
Citation in format AMSBIB
\Bibitem{Pyv05}
\by V.~N.~Pyvovarchyk
\paper Ambarzumian's Theorem for a Sturm--Liouville Boundary Value Problem on a Star-Shaped Graph
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 2
\pages 78--81
\mathnet{http://mi.mathnet.ru/faa44}
\crossref{https://doi.org/10.4213/faa44}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2161520}
\zmath{https://zbmath.org/?q=an:1118.34304}
\elib{https://elibrary.ru/item.asp?id=14278726}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 2
\pages 148--151
\crossref{https://doi.org/10.1007/s10688-005-0029-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231004800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23744434935}
Linking options:
  • https://www.mathnet.ru/eng/faa44
  • https://doi.org/10.4213/faa44
  • https://www.mathnet.ru/eng/faa/v39/i2/p78
  • This publication is cited in the following 28 articles:
    1. Dong-Jie Wu, Xin-Jian Xu, Chuan-Fu Yang, “Ambarzumyan's Theorem for the Dirac Operator on Equilateral Tree Graphs”, Acta Math. Appl. Sin. Engl. Ser., 40:2 (2024), 568  crossref
    2. Patrizio Bifulco, Joachim Kerner, “A note on Ambarzumian's theorem for quantum graphs”, Arch. Math., 123:1 (2024), 95  crossref
    3. M. Kiss, “An Ambarzumian type theorem on graphs with odd cycles”, Ukr. Mat. Zhurn., 74:12 (2023), 1679  crossref
    4. M. Kiss, “An Ambarzumian-Type Theorem on Graphs with Odd Cycles”, Ukr Math J, 74:12 (2023), 1916  crossref
    5. Zhang R., Yang Ch.-F., “Ambarzumyan-Type Theorem For the Impulsive Sturm-Liouville Operator”, J. Inverse Ill-Posed Probl., 29:1 (2021), 21–25  crossref  mathscinet  isi  scopus
    6. Yang Ch.-f., Wang F., Huang Zh.-y., “Ambarzumyan Theorems For Dirac Operators”, Acta Math. Appl. Sin.-Engl. Ser., 37:2 (2021), 287–298  crossref  mathscinet  isi
    7. Kurasov P., Suhr R., “Asymptotically Isospectral Quantum Graphs and Generalised Trigonometric Polynomials”, J. Math. Anal. Appl., 488:1 (2020), 124049  crossref  mathscinet  isi
    8. Chernyshenko A., Pivovarchik V., “Recovering the Shape of a Quantum Graph”, Integr. Equ. Oper. Theory, 92:3 (2020), 23  crossref  mathscinet  isi
    9. Kiss M., “Spectral Determinants and An Ambarzumian Type Theorem on Graphs”, Integr. Equ. Oper. Theory, 92:3 (2020), 24  crossref  mathscinet  isi
    10. Zhang W., Liu W., “Existence and Ulam'S Type Stability Results For a Class of Fractional Boundary Value Problems on a Star Graph”, Math. Meth. Appl. Sci., 43:15 (2020), 8568–8594  crossref  mathscinet  isi
    11. Boman J., Kurasov P., Suhr R., “Schrodinger Operators on Graphs and Geometry II. Spectral Estimates For l-1-Potentials and An Ambartsumian Theorem”, Integr. Equ. Oper. Theory, 90:3 (2018), UNSP 40  crossref  mathscinet  isi  scopus
    12. Boyko O., Martynyuk O., Pivovarchik V., “Ambarzumian Theorem For Non-Selfadjoint Boundary Value Problems”, J. Operat. Theor., 79:1 (2018), 213–223  crossref  mathscinet  zmath  isi  scopus
    13. Kurasov P., Suhr R., “Schrodinger Operators on Graphs and Geometry. III. General Vertex Conditions and Counterexamples”, J. Math. Phys., 59:10 (2018), 102104  crossref  mathscinet  zmath  isi
    14. Yang Ch.-F., Xu X.-Ch., “Ambarzumyan-type theorems on graphs with loops and double edges”, J. Math. Anal. Appl., 444:2 (2016), 1348–1358  crossref  mathscinet  zmath  isi  elib  scopus
    15. Didenko V.D., Rozhenko N.A., “Inverse Sturm-Liouville Spectral Problem on Symmetric Star-Tree”, Math. Meth. Appl. Sci., 37:15 (2014), 2211–2217  crossref  mathscinet  zmath  isi  scopus
    16. Pivovarchik V., Rozhenko N., “Inverse Sturm-Liouville Problem on Equilateral Regular Tree”, Appl. Anal., 92:4 (2013), 784–798  crossref  mathscinet  zmath  isi  elib  scopus
    17. Davies E.B., “An Inverse Spectral Theorem”, J. Operat. Theor., 69:1 (2013), 195–208  crossref  mathscinet  zmath  isi  scopus
    18. Law Ch.-K., Yanagida E., “A Solution to an Ambarzumyan Problem on Trees”, Kodai. Math. J., 35:2 (2012), 358–373  crossref  mathscinet  zmath  isi  scopus
    19. Yang Chuan Fu, Pivovarchik V.N., Huang Zhen You, “Ambarzumyan-type theorems on star graphs”, Oper. Matrices, 5:1 (2011), 119–131  crossref  mathscinet  zmath  isi  elib  scopus
    20. Yang Chuanfu, Yang Xiaoping, “Ambarzumyan's Theorem With Eigenparameter in the Boundary Conditions”, Acta Math Sci Ser B Engl Ed, 31:4 (2011), 1561–1568  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:822
    Full-text PDF :396
    References:78
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025