Abstract:
Ambarzumian's theorem describes the exceptional case in which the spectrum of a single Sturm–Liouville problem on a finite interval uniquely determines the potential. In this paper, an analog of Ambarzumian's theorem is proved for the case of a Sturm–Liouville problem on a compact star-shaped graph. This case is also exceptional and corresponds to the Neumann boundary conditions at the pendant vertices and zero potentials on the edges.
Keywords:
inverse problem, Neumann boundary conditions, normal eigenvalue, multiplicity of an eigenvalue, least eigenvalue, minimax principle.
Citation:
V. N. Pyvovarchyk, “Ambarzumian's Theorem for a Sturm–Liouville Boundary Value Problem on a Star-Shaped Graph”, Funktsional. Anal. i Prilozhen., 39:2 (2005), 78–81; Funct. Anal. Appl., 39:2 (2005), 148–151
\Bibitem{Pyv05}
\by V.~N.~Pyvovarchyk
\paper Ambarzumian's Theorem for a Sturm--Liouville Boundary Value Problem on a Star-Shaped Graph
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 2
\pages 78--81
\mathnet{http://mi.mathnet.ru/faa44}
\crossref{https://doi.org/10.4213/faa44}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2161520}
\zmath{https://zbmath.org/?q=an:1118.34304}
\elib{https://elibrary.ru/item.asp?id=14278726}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 2
\pages 148--151
\crossref{https://doi.org/10.1007/s10688-005-0029-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231004800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23744434935}
Linking options:
https://www.mathnet.ru/eng/faa44
https://doi.org/10.4213/faa44
https://www.mathnet.ru/eng/faa/v39/i2/p78
This publication is cited in the following 28 articles:
Dong-Jie Wu, Xin-Jian Xu, Chuan-Fu Yang, “Ambarzumyan's Theorem for the Dirac Operator on Equilateral Tree Graphs”, Acta Math. Appl. Sin. Engl. Ser., 40:2 (2024), 568
Patrizio Bifulco, Joachim Kerner, “A note on Ambarzumian's theorem for quantum graphs”, Arch. Math., 123:1 (2024), 95
M. Kiss, “An Ambarzumian type theorem on graphs with odd cycles”, Ukr. Mat. Zhurn., 74:12 (2023), 1679
M. Kiss, “An Ambarzumian-Type Theorem on Graphs with Odd Cycles”, Ukr Math J, 74:12 (2023), 1916
Zhang R., Yang Ch.-F., “Ambarzumyan-Type Theorem For the Impulsive Sturm-Liouville Operator”, J. Inverse Ill-Posed Probl., 29:1 (2021), 21–25
Yang Ch.-f., Wang F., Huang Zh.-y., “Ambarzumyan Theorems For Dirac Operators”, Acta Math. Appl. Sin.-Engl. Ser., 37:2 (2021), 287–298
Kurasov P., Suhr R., “Asymptotically Isospectral Quantum Graphs and Generalised Trigonometric Polynomials”, J. Math. Anal. Appl., 488:1 (2020), 124049
Chernyshenko A., Pivovarchik V., “Recovering the Shape of a Quantum Graph”, Integr. Equ. Oper. Theory, 92:3 (2020), 23
Kiss M., “Spectral Determinants and An Ambarzumian Type Theorem on Graphs”, Integr. Equ. Oper. Theory, 92:3 (2020), 24
Zhang W., Liu W., “Existence and Ulam'S Type Stability Results For a Class of Fractional Boundary Value Problems on a Star Graph”, Math. Meth. Appl. Sci., 43:15 (2020), 8568–8594
Boman J., Kurasov P., Suhr R., “Schrodinger Operators on Graphs and Geometry II. Spectral Estimates For l-1-Potentials and An Ambartsumian Theorem”, Integr. Equ. Oper. Theory, 90:3 (2018), UNSP 40
Boyko O., Martynyuk O., Pivovarchik V., “Ambarzumian Theorem For Non-Selfadjoint Boundary Value Problems”, J. Operat. Theor., 79:1 (2018), 213–223
Kurasov P., Suhr R., “Schrodinger Operators on Graphs and Geometry. III. General Vertex Conditions and Counterexamples”, J. Math. Phys., 59:10 (2018), 102104
Yang Ch.-F., Xu X.-Ch., “Ambarzumyan-type theorems on graphs with loops and double edges”, J. Math. Anal. Appl., 444:2 (2016), 1348–1358
Didenko V.D., Rozhenko N.A., “Inverse Sturm-Liouville Spectral Problem on Symmetric Star-Tree”, Math. Meth. Appl. Sci., 37:15 (2014), 2211–2217
Pivovarchik V., Rozhenko N., “Inverse Sturm-Liouville Problem on Equilateral Regular Tree”, Appl. Anal., 92:4 (2013), 784–798
Law Ch.-K., Yanagida E., “A Solution to an Ambarzumyan Problem on Trees”, Kodai. Math. J., 35:2 (2012), 358–373
Yang Chuan Fu, Pivovarchik V.N., Huang Zhen You, “Ambarzumyan-type theorems on star graphs”, Oper. Matrices, 5:1 (2011), 119–131
Yang Chuanfu, Yang Xiaoping, “Ambarzumyan's Theorem With Eigenparameter in the Boundary Conditions”, Acta Math Sci Ser B Engl Ed, 31:4 (2011), 1561–1568