Kalman filtering, information filtering, distributed filtering, parameter identification
Subject:
Methods of distributed filtering and parameter identification.
Main publications:
J. V. Tsyganova and M. V. Kulikova, A. V. Tsyganov, “A general approach for designing the {MWGS-based} information-form {Kalman} filtering methods”, European Journal of Control, 56 (2020), 86–97
J. V. Tsyganova and M. V. Kulikova, A. V. Tsyganov, “Some New Array Information Formulations of the {UD}-based {Kalman} Filter”, Proceedings of the 18th European Control Conference (ECC) (Napoli, Italy, June 25–28, 2019), IEEE, 2019, 1872–1877
Yu. V. Tsyganova, A. V. Tsyganov, A. N. Kuvshinova, D. V. Galushkina, “Identification of parameters of convection–diffusion–reaction model and unknown boundary conditions in the presence of random noise in measurements”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:2 (2024), 345–366
2022
2.
M. A. Shugurova, A. V. Tsyganov, J. V. Tsyganova, “Analysis of methods for modeling human daily thermometry data”, Zhurnal SVMO, 24:4 (2022), 469–484
2021
3.
A. N. Kuvshinova, A. V. Tsyganov, J. V. Tsyganova, “Mathematical modeling of parameter identification process of convection-diffusion transport models using the SVD-based Kalman filter”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021), 716–737
A. V. Tsyganov, Yu. V. Tsyganova, A. V. Golubkov, I. O. Petrishchev, “Adaptive estimation of a moving object trajectory using sequential hypothesis testing”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 156–162
J. V. Tsyganova, A. V. Tsyganov, “On the computation of derivatives within LD factorization of parametrized matrices”, Bulletin of Irkutsk State University. Series Mathematics, 23 (2018), 64–79
I. V. Semushin, A. V. Tsyganov, Yu. V. Tsyganova, A. V. Golubkov, S. D. Vinokurov, “Modelling and estimation of a moving object trajectory”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:3 (2017), 108–119