Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2019, Volume 12, Issue 1, Pages 156–162
DOI: https://doi.org/10.14529/mmp190115
(Mi vyuru481)
 

This article is cited in 2 scientific papers (total in 2 papers)

Short Notes

Adaptive estimation of a moving object trajectory using sequential hypothesis testing

A. V. Tsyganova, Yu. V. Tsyganovab, A. V. Golubkova, I. O. Petrishcheva

a Ulyanovsk State Pedagogical University named after I.N. Ulyanov, Ulyanovsk, Russian Federation
b Ulyanovsk State University, Ulyanovsk, Russian Federation
Full-text PDF (455 kB) Citations (2)
References:
Abstract: The present paper addresses the problem of adaptive estimation of a moving object trajectory and detection of changes in the motion mode. It is supposed that an object moves along a complex trajectory and at known discrete-time instants it may change its motion to one of three possible modes: a uniform straight line motion or a uniform anticlockwise/clockwise circular motion. We propose a new algorithm for adaptive trajectory estimation that combines a hybrid linear stochastic model of an object trajectory with a bank of competitive Kalman filters and a decision rule based on a sequential hypothesis testing. A detailed description of the decision rule and pseudocode of the proposed algorithm are given. The software implementation of the algorithm is made in Matlab. A numerical example of adaptive estimation of the motion of an object along a complex trajectory consisting of nine different pieces is considered. We have conducted computational experiments with different levels of noise in the measurements. The results confirm the effectiveness of the proposed algorithm.
Keywords: adaptive estimation, moving object, sequential hypothesis testing.
Funding agency Grant number
Russian Foundation for Basic Research 16-41-730784_р_а
18-37-00220_мол_а
This work was supported by the Russian Foundation for Basic Research (grants 16-41-730784, 18-37-00220).
Received: 24.09.2018
Bibliographic databases:
Document Type: Article
UDC: 004.942
MSC: 93A30, 93E10
Language: English
Citation: A. V. Tsyganov, Yu. V. Tsyganova, A. V. Golubkov, I. O. Petrishchev, “Adaptive estimation of a moving object trajectory using sequential hypothesis testing”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 156–162
Citation in format AMSBIB
\Bibitem{TsyTsyGol19}
\by A.~V.~Tsyganov, Yu.~V.~Tsyganova, A.~V.~Golubkov, I.~O.~Petrishchev
\paper Adaptive estimation of a moving object trajectory using sequential hypothesis testing
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2019
\vol 12
\issue 1
\pages 156--162
\mathnet{http://mi.mathnet.ru/vyuru481}
\crossref{https://doi.org/10.14529/mmp190115}
\elib{https://elibrary.ru/item.asp?id=37092216}
Linking options:
  • https://www.mathnet.ru/eng/vyuru481
  • https://www.mathnet.ru/eng/vyuru/v12/i1/p156
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :46
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024