05.13.18 (Mathematical modelling, calculating methods, and the program systems)
Birth date:
12.12.1959
E-mail:
Keywords:
combinatorial geometry; matrices theory, Navier–Stokes equations; theory of operators with dominant main diagonal.
Main publications:
Issledovanie matematicheskoi modeli vyazkouprugoi zhidkosti // DAN USSR, 1989, ser. A, # 10, s. 3–7 (Sobolevskii P. E.).
Dvizhenie nelineinoi vyazkouprugoi zhidkosti // DAN SSSR, 1990, t. 314, # 3, s. 521–525 (Sobolevskii P. E.).
O svyazi smeshannykh diskriminantov i sovmestnogo spektra semeistva kommutiruyuschikh operatorov v konechnomernom prostranstve // Matem. zametki, 1998, t. 62, vyp. 1, s. 3–7 (Azizova O. T.).
The Theeory of Operations with Dominant Main Diagonal. I // Positivity, 1998, v. 2, no. 5, p. 153–164.
Matematicheskaya model informatsionnogo prostranstva v probleme proektirovaniya optimalnykh informatsionnykh setei // Informatsionnye tekhnologii, 1998, # 5, s. 31–34 (Yurasov P. V.).
Geometricheskoe modelirovanie struktury informatsionnogo prostranstva. Izd-vo VGTU, 2000, 147 s.
Yu. Ya. Agranovich, N. V. Kontsevaya, V. L. Khatskevich, “A priori estimates of the maximal utility in Slutskii’s theory”, Contemporary Mathematics and Its Applications, 95 (2015), 77–82; Journal of Mathematical Sciences, 216:5 (2016), 679–684
1997
2.
Yu. Ya. Agranovich, O. T. Azizova, “A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space”, Mat. Zametki, 62:1 (1997), 3–9; Math. Notes, 62:1 (1997), 3–7
1990
3.
Yu. Ya. Agranovich, P. E. Sobolevskii, “Motion of a nonlinear viscoelastic fluid”, Dokl. Akad. Nauk SSSR, 314:3 (1990), 521–525; Dokl. Math., 42:2 (1991), 474–478