Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Agranovich, Yury Yakovlevich

Statistics Math-Net.Ru
Total publications: 3
Scientific articles: 3

Number of views:
This page:3588
Abstract pages:669
Full texts:276
References:64
Professor
Doctor of physico-mathematical sciences (2003)
Speciality: 05.13.18 (Mathematical modelling, calculating methods, and the program systems)
Birth date: 12.12.1959
E-mail:
Keywords: combinatorial geometry; matrices theory, Navier–Stokes equations; theory of operators with dominant main diagonal.
   
Main publications:
  • Issledovanie matematicheskoi modeli vyazkouprugoi zhidkosti // DAN USSR, 1989, ser. A, # 10, s. 3–7 (Sobolevskii P. E.).
  • Dvizhenie nelineinoi vyazkouprugoi zhidkosti // DAN SSSR, 1990, t. 314, # 3, s. 521–525 (Sobolevskii P. E.).
  • O svyazi smeshannykh diskriminantov i sovmestnogo spektra semeistva kommutiruyuschikh operatorov v konechnomernom prostranstve // Matem. zametki, 1998, t. 62, vyp. 1, s. 3–7 (Azizova O. T.).
  • The Theeory of Operations with Dominant Main Diagonal. I // Positivity, 1998, v. 2, no. 5, p. 153–164.
  • Matematicheskaya model informatsionnogo prostranstva v probleme proektirovaniya optimalnykh informatsionnykh setei // Informatsionnye tekhnologii, 1998, # 5, s. 31–34 (Yurasov P. V.).
  • Geometricheskoe modelirovanie struktury informatsionnogo prostranstva. Izd-vo VGTU, 2000, 147 s.

https://www.mathnet.ru/eng/person17523
List of publications on Google Scholar
https://zbmath.org/authors/ai:agranovich.yuri-ya
https://mathscinet.ams.org/mathscinet/MRAuthorID/271477

Publications in Math-Net.Ru Citations
2015
1. Yu. Ya. Agranovich, N. V. Kontsevaya, V. L. Khatskevich, “A priori estimates of the maximal utility in Slutskii’s theory”, Contemporary Mathematics and Its Applications, 95 (2015),  77–82  mathnet; Journal of Mathematical Sciences, 216:5 (2016), 679–684
1997
2. Yu. Ya. Agranovich, O. T. Azizova, “A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space”, Mat. Zametki, 62:1 (1997),  3–9  mathnet  mathscinet  zmath; Math. Notes, 62:1 (1997), 3–7  isi
1990
3. Yu. Ya. Agranovich, P. E. Sobolevskii, “Motion of a nonlinear viscoelastic fluid”, Dokl. Akad. Nauk SSSR, 314:3 (1990),  521–525  mathnet  mathscinet  zmath; Dokl. Math., 42:2 (1991), 474–478 2

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024