conservation laws and systems,
degenerate parabolic equations,
Leray-Lions operators,
entropy and renormalized solutions,
finite volume methods.
UDC:
517.956.35
Subject:
Analysis of nonlinear PDEs
(conservation laws, degenerate elliptic and parabolic problems). Theoretical numerical analysis (finite volume methods).
Biography
1991–1996 Moscow State University, mex-mat, chair of Diff. Equations;
1997–2000 PhD prepared in MSU (S. N. Kruzhkov) and in Franche-Comte University, France (Ph. Benilan);
2000–2003 Assistant professor, U. Marseilles;
2003– Assistant professor, U. Franche-Comte.
Main publications:
B. P. Andreianov, Ph. Benilan, S. N. Kruzhkov, “$L^1$-theory of scalar conservation law with continuous flux function”, J. Funct. Anal., 171:1 (2000), 15–33
B. P. Andreyanov, “On limits of solutions of the Riemann problem for a system of isentropic gas dynamics with viscosity in Euler coordinates”, Mat. Sbornik, 194:6 (2003), 3–22
B. A. Andreianov, M. Gutnic, P. Wittbold, “Convergence of finite volume approximations for a nonlinear elliptic-parabolic problem: a “continuous” approach”, SIAM J. Numer. Anal., 42:1 (2004), 228–251
B. Andreianov, F. Boyer, F. Hubert, “Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes”, Numer. Methods Partial Differential Equations, 23:1 (2007), 145–195
B. P. Andreianov, N. Igbida, “Uniqueness for inhomogeneous Dirichlet problem for elliptic-parabolic equations”, Proc. Royal Soc. Edinburgh Sect. A, 137:6 (2007), 1119–1133
B. P. Andreianov, “On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates”, Mat. Sb., 194:6 (2003), 3–22; Sb. Math., 194:6 (2003), 793–811
B. P. Andreianov, “The vanishing viscosity method and an explicit solution of the Riemann problem for a scalar conservation law”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 1, 3–8