Abstract:
For the problem ρt+(ρu)x=0,
(ρu)t+(ρu2+p(ρ))x=0,
(ρ,u)∣∣t=0,x<0=(ρ−,u−),
(ρ,u)∣∣t=0,x>0=(ρ+,u+)
one shows the existence and uniqueness of a solution obtainable as
a limit as ε tends to zero
of the bounded self-similar solutions of the regularized problem
with additional viscosity term εtuxx, ε>0,
in the second equation. The structure of the solutions is described in
detail, in particular, when they contain vacuum states.
Citation:
B. P. Andreianov, “On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates”, Sb. Math., 194:6 (2003), 793–811
\Bibitem{And03}
\by B.~P.~Andreianov
\paper On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates
\jour Sb. Math.
\yr 2003
\vol 194
\issue 6
\pages 793--811
\mathnet{http://mi.mathnet.ru/eng/sm739}
\crossref{https://doi.org/10.1070/SM2003v194n06ABEH000739}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992174}
\zmath{https://zbmath.org/?q=an:1065.35180}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185858900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0142118612}
Linking options:
https://www.mathnet.ru/eng/sm739
https://doi.org/10.1070/SM2003v194n06ABEH000739
https://www.mathnet.ru/eng/sm/v194/i6/p3
This publication is cited in the following 2 articles:
Zhang Ya., Zhang Yu., “Vanishing Viscosity Limit For Riemann Solutions to a Class of Non-Strictly Hyperbolic Systems”, Acta Appl. Math., 155:1 (2018), 151–175
Zhang Ya., Yang J., “Vanishing Viscosity Limit For Riemann Solutions to Zero-Pressure Gas Dynamics With Flux Perturbation”, Bound. Value Probl., 2018, 107