Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 41, Pages 38–45
DOI: https://doi.org/10.17223/20710410/41/4
(Mi pdm637)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical Methods of Cryptography

A nonlinear decomposition method in analysis of some encryption schemes using group automorphisms

V. A. Roman'kov, A. A. Obzor

Dostoevskii Omsk State University, Omsk, Russia
Full-text PDF (598 kB) Citations (1)
References:
Abstract: This paper shows how the nonlinear decomposition method, that had been invented by the first author, works against two cryptographic schemes based on group automorphisms. In some cases we can find the secret data and break the scheme without solving the algorithmic problem on which scheme is based. More exactly, let $G$ be a group and $A$ be a finitely generated subgroup of the automorphism group $\mathrm{Aut}(G)$. Suppose, that the membership search problem for $G$ is efficiently solvable for any subgroup of the form $\langle g^A\rangle$ generated by the all images of $g$ under automorphisms of $A$, and every subgroup $\langle g^A\rangle$ is finitely generated. Then there exists an efficient algorithm to construct a finite generating set of $\langle g^A\rangle$ and the nonlinear decomposition method can be applied. In particular, if the elements $g, f=g^\alpha,h=f^\beta\in G$ are public, $\alpha,\beta\in\mathrm{Aut}(G)$, $\alpha\beta=\beta\alpha$, and $\alpha,\beta$ are private, then one can efficiently compute $h^\alpha$ without computing $\alpha$ or $\beta$. The method efficiently works for a Noetherian group with efficiently solvable membership search problem. In particular, finitely generated nilpotent (more generally, polycyclic) groups, that are frequently used in the modern algebraic cryptography, share this property.
Keywords: cryptography, cryptanalysis, key exchange, nonlinear decomposition, membership search problem.
Funding agency Grant number
Russian Science Foundation 16-11-10002
Bibliographic databases:
Document Type: Article
UDC: 003.26+004.056.55+512.54
Language: Russian
Citation: V. A. Roman'kov, A. A. Obzor, “A nonlinear decomposition method in analysis of some encryption schemes using group automorphisms”, Prikl. Diskr. Mat., 2018, no. 41, 38–45
Citation in format AMSBIB
\Bibitem{RomObz18}
\by V.~A.~Roman'kov, A.~A.~Obzor
\paper A nonlinear decomposition method in analysis of some encryption schemes using group automorphisms
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 41
\pages 38--45
\mathnet{http://mi.mathnet.ru/pdm637}
\crossref{https://doi.org/10.17223/20710410/41/4}
\elib{https://elibrary.ru/item.asp?id=35688727}
Linking options:
  • https://www.mathnet.ru/eng/pdm637
  • https://www.mathnet.ru/eng/pdm/y2018/i3/p38
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:214
    Full-text PDF :76
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024