Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 41, Pages 28–37
DOI: https://doi.org/10.17223/20710410/41/3
(Mi pdm631)
 

This article is cited in 7 scientific papers (total in 7 papers)

Mathematical Methods of Cryptography

Criteria for Markov block ciphers

O. V. Denisov

Innovative Telecommunication Technologies, LLC, Moscow, Russia
Full-text PDF (679 kB) Citations (7)
References:
Abstract: We study probabilistic models of block ciphers with random independent identically distributed round keys. We call they by Markov ciphers if sequence of round differentials is a simple homogeneous Markov chain. Criteria and sufficient condition for this property are adjusted and generalized. Particularly, we prove that, for an iterative $r$-round block cipher with group operation on the set $\mathcal X$ of blocks and round function $g$, the following four conditions are equivalent: 1) for any plaintext of two blocks $(X,X^*)$, the sequence of random round differentials $\Delta X=X^*X^{-1}$, $\Delta X(1)=X^*(1)X(1)^{-1},\ldots,\Delta X(r)=X^*(r)X(r)^{-1}$ is a homogeneous Markov chain under any distribution of $(X,X^*)$; 2) for all $a\in\mathcal X\setminus\{e\}$, the distribution of $g(ax)g(x)^{-1}$ doesn't depend on $x\in\mathcal X$; 3) $\forall a\in\mathcal X\setminus\{e\}$, $x\in\mathcal X$ $(g(ax)g(x)^{-1}\sim g(aX)g(X)^{-1})$ under any distribution of $X$; 4) $\forall x\in\mathcal X$ $(g(\Delta X\, x)g(x)^{-1}\sim g(\Delta X\,X)g(X)^{-1})$ under any distribution of $(X,\Delta X)$. The class of Markov ciphers constructed in Lai's dissertation is expanded. We give sufficient conditions under which formula for the transition probabilities matrix of the expanded class contains tensor product of S-box transition probabilities matrices.
Keywords: Markov ciphers, random permutations, transition probabilities of differentials.
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: O. V. Denisov, “Criteria for Markov block ciphers”, Prikl. Diskr. Mat., 2018, no. 41, 28–37
Citation in format AMSBIB
\Bibitem{Den18}
\by O.~V.~Denisov
\paper Criteria for Markov block ciphers
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 41
\pages 28--37
\mathnet{http://mi.mathnet.ru/pdm631}
\crossref{https://doi.org/10.17223/20710410/41/3}
\elib{https://elibrary.ru/item.asp?id=35688726}
Linking options:
  • https://www.mathnet.ru/eng/pdm631
  • https://www.mathnet.ru/eng/pdm/y2018/i3/p28
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:284
    Full-text PDF :156
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024