Abstract:
We study probabilistic models of block ciphers with random independent identically distributed round keys. We call they by Markov ciphers if sequence of round differentials is a simple homogeneous Markov chain. Criteria and sufficient condition for this property are adjusted and generalized. Particularly, we prove that, for an iterative r-round block cipher with group operation on the set X of blocks and round function g, the following four conditions are equivalent: 1) for any plaintext of two blocks (X,X∗), the sequence of random round differentials ΔX=X∗X−1, ΔX(1)=X∗(1)X(1)−1,…,ΔX(r)=X∗(r)X(r)−1 is a homogeneous Markov chain under any distribution of (X,X∗); 2) for all a∈X∖{e}, the distribution of g(ax)g(x)−1 doesn't depend on x∈X; 3) ∀a∈X∖{e}, x∈X(g(ax)g(x)−1∼g(aX)g(X)−1) under any distribution of X; 4) ∀x∈X(g(ΔXx)g(x)−1∼g(ΔXX)g(X)−1) under any distribution of (X,ΔX). The class of Markov ciphers constructed in Lai's dissertation is expanded. We give sufficient conditions under which formula for the transition probabilities matrix of the expanded class contains tensor product of S-box transition probabilities matrices.
Keywords:
Markov ciphers, random permutations, transition probabilities of differentials.
Bibliographic databases:
Document Type:
Article
UDC:519.2
Language: Russian
Citation:
O. V. Denisov, “Criteria for Markov block ciphers”, Prikl. Diskr. Mat., 2018, no. 41, 28–37
This publication is cited in the following 7 articles:
O. V. Denisov, “Raznostnye svoistva sluchainykh otobrazhenii i ikh kompozitsii”, Matem. vopr. kriptogr., 15:1 (2024), 5–20
V. O. Drelikhov, “O konstruktsiyakh markovskikh otobrazhenii”, Matem. vopr. kriptogr., 15:1 (2024), 21–34
O. V. Denisov, “Mnogomernyi spektralnyi kriterii dlya proverki gipotez o sluchainykh podstanovkakh”, Matem. vopr. kriptogr., 14:3 (2023), 85–106
V. O. Drelikhov, “Veroyatnostnye svoistva statisticheskikh svyazei mezhdu vkhodom i vykhodom markovskogo iterativnogo shifra s raundovymi otobrazheniyami na abelevykh gruppakh”, Matem. vopr. kriptogr., 12:1 (2021), 59–82
O. V. Denisov, “Spektralnyi veroyatnostno-statisticheskii analiz markovskikh shifrov”, PDM, 2021, no. 53, 12–31
O. V. Denisov, “Ataki razlicheniya na blochnye shifrsistemy po raznostyam dvublochnykh tekstov”, PDM, 2020, no. 48, 43–62
A. A. Perov, A. I. Pestunov, “O vozmozhnosti primeneniya svertochnykh neironnykh setei k postroeniyu universalnykh atak na iterativnye blochnye shifry”, PDM, 2020, no. 49, 46–56