Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 41, Pages 46–53
DOI: https://doi.org/10.17223/20710410/41/5
(Mi pdm629)
 

Applied Graph Theory

Periods of $\varphi$-graphs

N. A. Artemova

Saratov State University, Saratov, Russia
References:
Abstract: A connected graph with $n\ge3$ vertices obtained from the circuit $C_n$ by reorienting some of its arcs is called a polygonal graph. We consider a bijection $\varphi$ between the set of sinks and the set of sources of a polygonal graph $G$. We attach to $G$ all arcs of type $v\varphi(v)$ where $v$ is a sink. The resulting strongly connected graph is called a $\varphi$-graph. When we compute successive powers of a binary Boolean matrix $A$, the sequence starts to repeat itself at some moment, i.e. we get $A^{m+1}=A^l$ for some $l\le m$. The number $\mathrm{ind}(A)=l-1$ is called an index, and the value $\mathrm p(A)=((m+1)-l)$ is the period of the matrix $A$. For the graph $G$ with adjacency matrix $A$, let $\mathrm{ind}(G)=\mathrm{ind}(A)$ and $\mathrm p(G)=\mathrm p(A)$ (index and period of the graph). We calculate the values of periods of all not isomorphic $\varphi$-graphs with a number of vertices up to nine and the maximal periods of $\varphi$-graphs with a number of vertices up to seventeen. We prove the theorem that allows to compute the period of any $\varphi$-graph. Namely, the period of a $\varphi$-graph is equal to the greatest common divisor of the lengths of its circuits. The value of the maximal period for $n$-vertex $\varphi$-graph with even $n$ equals $n/2+1$, and the maximal period of a $\varphi$-graph with an odd $n$ is less than $\lfloor n/2\rfloor+1$. From the theorem for the maximal values of the periods, we obtain some corollaries. Particularly, according to Corollary 1, among the all $n$-vertex $\varphi$-graphs with even $n$, $\varphi$-graphs obtained from the polygonal graphs with one sink and one source have the maximal period.
Keywords: polygonal graph, primitivity, $\varphi$-graph, index and period of graph.
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: N. A. Artemova, “Periods of $\varphi$-graphs”, Prikl. Diskr. Mat., 2018, no. 41, 46–53
Citation in format AMSBIB
\Bibitem{Art18}
\by N.~A.~Artemova
\paper Periods of $\varphi$-graphs
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 41
\pages 46--53
\mathnet{http://mi.mathnet.ru/pdm629}
\crossref{https://doi.org/10.17223/20710410/41/5}
\elib{https://elibrary.ru/item.asp?id=35688728}
Linking options:
  • https://www.mathnet.ru/eng/pdm629
  • https://www.mathnet.ru/eng/pdm/y2018/i3/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:209
    Full-text PDF :82
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025