Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 40, Pages 10–22
DOI: https://doi.org/10.17223/20710410/40/2
(Mi pdm619)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical Backgrounds of Applied Discrete Mathematics

Linear decomposition of Boolean functions into a sum or a product of components

A. V. Cheremushkin

Technology Federal State Unitary Enterprise "Research Institute Kvant", Moscow, Russia
Full-text PDF (669 kB) Citations (1)
References:
Abstract: Let $f\colon\operatorname{GF}(2)^n\to\operatorname{GF}(2)$ be a Boolean function, $n\ge2$, and $\mathcal U_s$ be a set of Boolean functions $f$ of degree $\operatorname{deg}f\le s$. Here is a consideration of the disjunctive decomposition of $f$ into sum and products modulo $\mathcal U_s$ of Boolean functions after a linear substitution on arguments. The main result is the following: if all arguments of the functions $f(xA)$ under linear substitutions $A$ of the vector space $\operatorname{GF}(2)^n$ are essential modulo $\mathcal U_s$ and $f$ may be represented as disjunctive sum $f\equiv f_1\oplus\dots\oplus f_m\pmod{\mathcal U_s}$, where $m$ is maximal, then subsequent direct sum of subspaces $\operatorname{GF}(2)^n=V^{(1)}+\dots+V^{(m)}$ is unique and invariant under stabilizer group of the function $f$ in general linear group. The article contains analogous result describing sufficient uniqueness condition for disjunctive products $f\equiv f_1\dots f_m\pmod{\mathcal U_s}$, namely, every function $f_i$ has no affine multipliers and the set $\{a\in V_i\colon f_i(x\oplus a)\oplus f_i(x)\ \text{has affine multipliers}\}$ generates the whole subspace $V_i$, $i=1,\dots,m$. For instance, this class of functions contains a nondegenerated quadratic forms.
Keywords: Boolean functions, disjunctive decomposition, disjunctive sum, disjunctive products, linear transformation.
Bibliographic databases:
Document Type: Article
UDC: 519.719.325
Language: Russian
Citation: A. V. Cheremushkin, “Linear decomposition of Boolean functions into a sum or a product of components”, Prikl. Diskr. Mat., 2018, no. 40, 10–22
Citation in format AMSBIB
\Bibitem{Che18}
\by A.~V.~Cheremushkin
\paper Linear decomposition of Boolean functions into a~sum or a~product of components
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 40
\pages 10--22
\mathnet{http://mi.mathnet.ru/pdm619}
\crossref{https://doi.org/10.17223/20710410/40/2}
\elib{https://elibrary.ru/item.asp?id=35155721}
Linking options:
  • https://www.mathnet.ru/eng/pdm619
  • https://www.mathnet.ru/eng/pdm/y2018/i2/p10
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:256
    Full-text PDF :96
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024