Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 40, Pages 5–9
DOI: https://doi.org/10.17223/20710410/40/1
(Mi pdm624)
 

Theoretical Backgrounds of Applied Discrete Mathematics

The class of balanced algebraic threshold functions

D. A. Soshin

Technology Federal State Unitary Enterprise "Research Institute Kvant", Moscow, Russia
References:
Abstract: The paper proposes an approach to the construction of a class of balanced algebraic threshold functions (ATF). The function $f$ of $k$-valued logic is called ATF if there are sequences $\mathbf c=(c_0,c_1,\dots,c_n)$, $\mathbf b=(b_0,b_1,\dots,b_k)$ of integers and the natural modulus $m$ such that $f(x_1,x_2,\dots,x_n)=\alpha\Leftrightarrow b_\alpha\leq(c_0+c_1x_1+c_2x_2+\dots+c_n x_n)\mod m<b_{\alpha+1}$ for any $\alpha\in\Omega_k=\{0,1,\dots,k-1\}$. The triple $(\mathbf c;\mathbf b;m)$ is called the structure of the function $f$. The central result of the paper is a class of balanced ATF constructed in the following way: if an ATF $f$ has a structure $(\mathbf c,\mathbf b,m)=((c_0,c_1,c_2,\dots,c_n);(0,p,2p,\dots,kp);kp)$ where $c_i=pq$ and $(q,k)=1$, then this function is balanced. Such functions can be used as coordinate functions of substitutions.
Keywords: algebraic threshold functions, balanced functions.
Bibliographic databases:
Document Type: Article
UDC: 512.13
Language: Russian
Citation: D. A. Soshin, “The class of balanced algebraic threshold functions”, Prikl. Diskr. Mat., 2018, no. 40, 5–9
Citation in format AMSBIB
\Bibitem{Sos18}
\by D.~A.~Soshin
\paper The class of balanced algebraic threshold functions
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 40
\pages 5--9
\mathnet{http://mi.mathnet.ru/pdm624}
\crossref{https://doi.org/10.17223/20710410/40/1}
\elib{https://elibrary.ru/item.asp?id=35155720}
Linking options:
  • https://www.mathnet.ru/eng/pdm624
  • https://www.mathnet.ru/eng/pdm/y2018/i2/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :72
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024