Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2018, Number 40, Pages 23–33
DOI: https://doi.org/10.17223/20710410/40/3
(Mi pdm618)
 

This article is cited in 10 scientific papers (total in 10 papers)

Mathematical Methods of Cryptography

Asymmetric cryptosystems on Boolean functions

G. P. Agibalov, I. A. Pankratova

National Research Tomsk State University, Tomsk, Russia
References:
Abstract: Here, we define an asymmetric substitution cryptosystem combining both a public key cipher and a signature scheme with the functional keys. A public key in the cryptosystem is a vector Boolean function $f(x_1,\dots,x_n)$ of a dimension $n$. This function is obtained by permutation and negation operations on variables and coordinate functions of a bijective vector Boolean function $g(x_1,\dots,x_n)=(g_1(x_1,\dots,x_n),\dots,g_n(x_1,\dots,x_n))$. The function $g$ is called a generating function of the cryptosystem. For each $i\in\{1,\dots,n\}$, its coordinate function $g_i(x_1,\dots,x_n)$ is assumed to be specified in a constructive way and to have a polynomial (in $n$) complexity. A private key of the cryptosystem is the function $f^{-1}$, that is, the inverse of $f$. The existence of $f^{-1}$ follows from the bijectiveness of $g$ and preserving this property by permutation and negation operations. Function $g$ and its coordinates $g_1,\dots,g_n$ are public parameters of the cryptosystem. (A variant of the cryptosystem allows to include them into the private key). Of course, the permutation and negation operations by which a public key is computed from the generating function must be secret as private exponents in RSA and ElGamal cryptosystems. A block $P$ of a plaintext is encrypted to a block $C$ of a ciphertext by the rule $C=f(P)$, and $C$ is decrypted to $P$ by the rule $P=f^{-1}(C)$. A signature on a message $M$ is computed as $S = f^{-1}(P)$, and its validation is proved by verifying the equality $M=f(S)$. This cryptosystem is believed to resist classical and quantum computers attacks. Its security is based on the difficulty of inverting large bijective vector Boolean functions. Cryptanalysis of the cryptosystem shows that its computational complexity can reach the value O$(n!2^n)$.
Keywords: vector Boolean functions, invertibility, asymmetric substitution cryptosystem, cryptanalysis.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00354
The authors were supported by the RFBR-grant no. 17-01-00354.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: English
Citation: G. P. Agibalov, I. A. Pankratova, “Asymmetric cryptosystems on Boolean functions”, Prikl. Diskr. Mat., 2018, no. 40, 23–33
Citation in format AMSBIB
\Bibitem{AgiPan18}
\by G.~P.~Agibalov, I.~A.~Pankratova
\paper Asymmetric cryptosystems on Boolean functions
\jour Prikl. Diskr. Mat.
\yr 2018
\issue 40
\pages 23--33
\mathnet{http://mi.mathnet.ru/pdm618}
\crossref{https://doi.org/10.17223/20710410/40/3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438782300003}
\elib{https://elibrary.ru/item.asp?id=35155722}
Linking options:
  • https://www.mathnet.ru/eng/pdm618
  • https://www.mathnet.ru/eng/pdm/y2018/i2/p23
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:286
    Full-text PDF :97
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024