Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2015, Volume 11, Number 3, Pages 579–611 (Mi nd495)  

This article is cited in 13 scientific papers (total in 13 papers)

Translated papers

The dynamics of systems with servoconstraints. II

V. V. Kozlov

Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina st. 8, Moscow, 119991, Russia
References:
Abstract: This paper addresses the dynamics of systems with servoconstraints where the constraints are realized by controlling the inertial properties of the system. Vakonomic systems are a particular case. Special attention is given to the motion on Lie groups with left-invariant kinetic energy and a left-invariant constraint. The presence of symmetries allows the dynamical equations to be reduced to a closed system of differential equations with quadratic right-hand sides. As the main example, we consider the rotation of a rigid body with a left-invariant servo-constraint, which implies that the projection of the body’s angular velocity on some body-fixed direction is zero.
Keywords: servoconstraints, symmetries, Lie groups, left-invariant constraints, systems with quadratic right-hand sides, vakonomic systems.
Funding agency Grant number
Russian Science Foundation 14-50-00005
Received: 14.05.2015
Revised: 01.07.2015
English version:
Regular and Chaotic Dinamics, 2015, Volume 20, Issue 4, Pages 401–427
DOI: https://doi.org/10.1134/S1560354715040012
Document Type: Article
UDC: 531.36
MSC: 70E18, 34C40
Language: Russian
Citation: V. V. Kozlov, “The dynamics of systems with servoconstraints. II”, Nelin. Dinam., 11:3 (2015), 579–611; Regular and Chaotic Dinamics, 20:4 (2015), 401–427
Citation in format AMSBIB
\Bibitem{Koz15}
\by V.~V.~Kozlov
\paper The dynamics of systems with servoconstraints. II
\jour Nelin. Dinam.
\yr 2015
\vol 11
\issue 3
\pages 579--611
\mathnet{http://mi.mathnet.ru/nd495}
\transl
\jour Regular and Chaotic Dinamics
\yr 2015
\vol 20
\issue 4
\pages 401--427
\crossref{https://doi.org/10.1134/S1560354715040012}
Linking options:
  • https://www.mathnet.ru/eng/nd495
  • https://www.mathnet.ru/eng/nd/v11/i3/p579
    Cycle of papers Translation
    This publication is cited in the following 13 articles:
    1. K. Khusanov, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2612, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2023, 050037  crossref
    2. G. K. Tolokonnikov, Lecture Notes on Data Engineering and Communications Technologies, 158, Advances in Intelligent Systems, Computer Science and Digital Economics IV, 2023, 126  crossref
    3. Jiaming Xiong, Ruihan Yu, Caishan Liu, “Steering control and stability analysis for an autonomous bicycle: part I—theoretical framework and simulations”, Nonlinear Dyn, 111:18 (2023), 16705  crossref
    4. E. A. Mikishanina, “Rolling motion dynamics of a spherical robot with a pendulum actuator controlled by the Bilimovich servo-constraint”, Theoret. and Math. Phys., 211:2 (2022), 679–691  mathnet  crossref  crossref  mathscinet  adsnasa
    5. Kahramanjon Khusanov, D. Bazarov, “Selecting Control Parameters of Mechanical Systems with Servoconstraints”, E3S Web Conf., 264 (2021), 04085  crossref
    6. K Khusanov, “Stabilization of mechanical systems with nonholonomic servoconstraints”, IOP Conf. Ser.: Mater. Sci. Eng., 883:1 (2020), 012164  crossref
    7. R. G. Mukharlyamov, “Control of the Dynamics of a System with Differential Constraints”, J. Comput. Syst. Sci. Int., 58:4 (2019), 515  crossref
    8. I. A. Bizyaev, A. V. Borisov, V. V. Kozlov, I. S. Mamaev, “Fermi-like acceleration and power-law energy growth in nonholonomic systems”, Nonlinearity, 32:9 (2019), 3209–3233  mathnet  crossref  isi  scopus
    9. R G Mukharlyamov, “Modelling of dynamics of mechanical systems with regard for constraint stabilization”, IOP Conf. Ser.: Mater. Sci. Eng., 468 (2018), 012041  crossref
    10. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Haokun Kang, Caishan Liu, Yan-Bin Jia, “Inverse dynamics and energy optimal trajectories for a wheeled mobile robot”, International Journal of Mechanical Sciences, 134 (2017), 576  crossref
    12. V. P. Pavlov, V. M. Sergeev, “Fluid dynamics and thermodynamics as a unified field theory”, Proc. Steklov Inst. Math., 294 (2016), 222–232  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    13. Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “Historical and critical review of the development of nonholonomic mechanics: the classical period”, Regul. Chaot. Dyn., 21:4 (2016), 455  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:466
    Full-text PDF :117
    References:93
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025