Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 4, Pages 502–515
DOI: https://doi.org/10.4213/mzm6640
(Mi mzm6640)
 

This article is cited in 3 scientific papers (total in 3 papers)

Almost Everywhere Divergent Subsequences of Fourier Sums of Functions from φ(L)Hω1

N. Yu. Antonov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (548 kB) Citations (3)
References:
Abstract: For a gap sequence of natural numbers {nk}k=1, for a nondecreasing function φ:[0,+)[0,+) such that φ(u)=o(ulnlnu) as u, and a modulus of continuity satisfying the condition (lnk)1=O(ω(n1k)), we present an example of a function Fφ(L)Hω1 with an almost everywhere divergent subsequence {Snk(F,x)} of the sequence of partial sums of the trigonometric Fourier series of the function F.
Keywords: Fourier sum, gap sequence, trigonometric Fourier series, modulus of continuity, Dirichlet kernel, Lebesgue measurability, Jensen's inequality.
Received: 15.01.2008
Revised: 04.07.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 4, Pages 484–495
DOI: https://doi.org/10.1134/S0001434609030201
Bibliographic databases:
UDC: 517.518
Language: Russian
Citation: N. Yu. Antonov, “Almost Everywhere Divergent Subsequences of Fourier Sums of Functions from φ(L)Hω1”, Mat. Zametki, 85:4 (2009), 502–515; Math. Notes, 85:4 (2009), 484–495
Citation in format AMSBIB
\Bibitem{Ant09}
\by N.~Yu.~Antonov
\paper Almost Everywhere Divergent Subsequences of Fourier Sums of Functions from $\varphi(L)\cap H_1^\omega$
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 4
\pages 502--515
\mathnet{http://mi.mathnet.ru/mzm6640}
\crossref{https://doi.org/10.4213/mzm6640}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2549413}
\zmath{https://zbmath.org/?q=an:05628178}
\elib{https://elibrary.ru/item.asp?id=15305483}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 4
\pages 484--495
\crossref{https://doi.org/10.1134/S0001434609030201}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266561100020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70249106439}
Linking options:
  • https://www.mathnet.ru/eng/mzm6640
  • https://doi.org/10.4213/mzm6640
  • https://www.mathnet.ru/eng/mzm/v85/i4/p502
  • This publication is cited in the following 3 articles:
    1. Lie V., “The Pointwise Convergence of Fourier Series (II). Strong l(1)Case For the Lacunary Carleson Operator”, Adv. Math., 357 (2019), 106831  crossref  mathscinet  isi
    2. Lie V., “Pointwise Convergence of Fourier Series (i). on a Conjecture of Konyagin”, J. Eur. Math. Soc., 19:6 (2017), 1655–1728  crossref  mathscinet  zmath  isi  scopus
    3. S. V. Konyagin, “Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S99–S106  mathnet  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:687
    Full-text PDF :262
    References:110
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025