Abstract:
Denote by Matk,l(F)Matk,l(F) the algebra Mn(F)Mn(F) of matrices of order n=k+ln=k+l with the grading (Mat0k,l(F),Mat1k,l(F))(Mat0k,l(F),Mat1k,l(F)), where Mat0k,l(F)Mat0k,l(F) admits the basis {eij,i⩽k,j⩽k}∪{eij,i>k,j>k} and Mat1k,l(F) admits the basis {eij,i⩽k,j>k}∪{eij,i>k,j⩾k}. Denote by Mk,l(F) the Grassmann envelope of the superalgebra Matk,l(F). In the paper, bases of the graded identities of the superalgebras Mat1,2(F) and M1,2(F) are described.
Citation:
I. V. Averyanov, “Basis of Graded Identities of the Superalgebra M1,2(F)”, Mat. Zametki, 85:4 (2009), 483–501; Math. Notes, 85:4 (2009), 467–483
This publication is cited in the following 8 articles:
S. Yu. Antonov, A. V. Antonova, “O kvazimnogochlenakh Kapelli. III”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 21:2 (2021), 142–150
S. Yu. Antonov, A. V. Antonova, “O kvazimnogochlenakh Kapelli. II”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 20:1 (2020), 4–16
S. Yu. Antonov, A. V. Antonova, “K teoreme Chenga. III”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 18:2 (2018), 128–143
S. Yu. Antonov, A. V. Antonova, “O kvazimnogochlenakh Kapelli”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 15:4 (2015), 371–382
Aque S., Giambruno A., “Cocharacters of Bilinear Mappings and Graded Matrices”, Algebr. Represent. Theory, 16:6 (2013), 1621–1646
Aque S., “Computing the Z(2)-Cocharacter of 3 X 3 Matrices of Odd Degree”, Commun. Algebr., 41:4 (2013), 1405–1416
S. Yu. Antonov, “Some estimates for the least power of identities of subspaces $M_1^{(m,k)}(F)$ of the matrix superalgebra $M^{(m,k)}(F)$”, Russian Math. (Iz. VUZ), 56:5 (2012), 9–22
V. P. Maslov, “A new distribution generalizing the Bose–Einstein distribution”, Theoret. and Math. Phys., 159:2 (2009), 684–685