Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 4, Pages 516–523
DOI: https://doi.org/10.4213/mzm4890
(Mi mzm4890)
 

This article is cited in 17 scientific papers (total in 17 papers)

Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period

V. S. Atabekyan

Yerevan State University
References:
Abstract: A famous theorem of Adyan states that, for any m2 and any odd n665, the free m-generated Burnside group B(m,n) of period n is not amenable. It is proved in the present paper that every noncyclic subgroup of the free Burnside group B(m,n) of odd period n1003 is a uniformly nonamenable group. This result implies the affirmative answer, for odd n1003, to the following de la Harpe question: Is it true that the infinite free Burnside group B(m,n) has uniform exponential growth? It is also proved that every S-ball of radius (400n)3 contains two elements which form a basis of a free periodic subgroup of rank 2 in B(m,n), where S is an arbitrary set of elements generating a noncyclic subgroup of B(m,n).
Keywords: free Burnside group, periodic group, amenable group, uniformly nonamenable groups, Følner constant, uniform exponential growth, hyperbolic group.
Received: 22.04.2008
Revised: 30.06.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 4, Pages 496–502
DOI: https://doi.org/10.1134/S0001434609030213
Bibliographic databases:
UDC: 512.543
Language: Russian
Citation: V. S. Atabekyan, “Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period”, Mat. Zametki, 85:4 (2009), 516–523; Math. Notes, 85:4 (2009), 496–502
Citation in format AMSBIB
\Bibitem{Ata09}
\by V.~S.~Atabekyan
\paper Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 4
\pages 516--523
\mathnet{http://mi.mathnet.ru/mzm4890}
\crossref{https://doi.org/10.4213/mzm4890}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2549414}
\zmath{https://zbmath.org/?q=an:05628179}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 4
\pages 496--502
\crossref{https://doi.org/10.1134/S0001434609030213}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266561100021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949141193}
Linking options:
  • https://www.mathnet.ru/eng/mzm4890
  • https://doi.org/10.4213/mzm4890
  • https://www.mathnet.ru/eng/mzm/v85/i4/p516
  • This publication is cited in the following 17 articles:
    1. G. G. Gevorgyan, V. G. Dilanyan, “Almost identities in groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 58:1 (2024), 8–12  mathnet  crossref
    2. Coulon R., Steenbock M., “Product Set Growth in Burnside Groups”, J. Ecole Polytech.-Math., 9 (2022), 463–504  crossref  mathscinet  isi
    3. V. S. Atabekyan, H. T. Aslanyan, S. T. Aslanyan, “Powers of subsets in free periodic groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 56:2 (2022), 43–48  mathnet  crossref
    4. V. S. Atabekyan, V. G. Mikaelyan, “On the Product of Subsets in Periodic Groups”, J. Contemp. Mathemat. Anal., 57:6 (2022), 395  crossref
    5. V. S. Atabekyan, V. G. Mikaelyan, “O proizvedenii podmnozhestv v pereodicheskikh gruppakh”, Proceedings of NAS RA. Mathematics, 2022, 12  crossref
    6. Adian S.I. Atabekyan V.S., “Periodic Products of Groups”, J. Contemp. Math. Anal.-Armen. Aca., 52:3 (2017), 111–117  crossref  mathscinet  zmath  isi  scopus
    7. S. I. Adian, V. S. Atabekyan, “$C^*$-Simplicity of $n$-Periodic Products”, Math. Notes, 99:5 (2016), 631–635  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    8. S. I. Adian, Varuzhan Atabekyan, “Characteristic properties and uniform non-amenability of $n$-periodic products of groups”, Izv. Math., 79:6 (2015), 1097–1110  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Goulnara Arzhantseva, Trends in Mathematics, 1, Extended Abstracts Fall 2012, 2014, 7  crossref
    10. Coulon R., “Growth of Periodic Quotients of Hyperbolic Groups”, Algebr. Geom. Topol., 13:6 (2013), 3111–3133  crossref  mathscinet  zmath  isi  elib  scopus
    11. V. S. Atabekyan, “On normal subgroups in the periodic products of S. I. Adian”, Proc. Steklov Inst. Math., 274 (2011), 9–24  mathnet  crossref  mathscinet  isi  elib  elib
    12. V. S. Atabekyan, “Nonunitarizable Periodic Groups”, Math. Notes, 87:6 (2010), 908–911  mathnet  crossref  crossref  mathscinet  isi
    13. S. I. Adian, “The Burnside problem and related topics”, Russian Math. Surveys, 65:5 (2010), 805–855  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. A. S. Pahlevanyan, “Independent pairs in free Burnside groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2010, no. 2, 58–62  mathnet
    15. H. R. Rostami, “Non-unitarizable groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2010, no. 3, 40–43  mathnet
    16. V. S. Atabekyan, “The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$”, J. Math. Sci., 166:6 (2010), 691–703  mathnet  crossref  mathscinet  elib
    17. V. S. Atabekyan, “Monomorphisms of Free Burnside Groups”, Math. Notes, 86:4 (2009), 457–462  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1044
    Full-text PDF :214
    References:112
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025