Abstract:
A famous theorem of Adyan states that, for any m⩾2 and any odd n⩾665, the free m-generated Burnside group B(m,n) of period n is not amenable. It is proved in the present paper that every noncyclic subgroup of the free Burnside group B(m,n) of odd period n⩾1003 is a uniformly nonamenable group. This result implies the affirmative answer, for odd n⩾1003, to the following de la Harpe question: Is it true that the infinite free Burnside group B(m,n) has uniform exponential growth? It is also proved that every S-ball of radius (400n)3 contains two elements which form a basis of a free periodic subgroup of rank 2 in B(m,n), where S is an arbitrary set of elements generating a noncyclic subgroup of B(m,n).
Citation:
V. S. Atabekyan, “Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period”, Mat. Zametki, 85:4 (2009), 516–523; Math. Notes, 85:4 (2009), 496–502
\Bibitem{Ata09}
\by V.~S.~Atabekyan
\paper Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 4
\pages 516--523
\mathnet{http://mi.mathnet.ru/mzm4890}
\crossref{https://doi.org/10.4213/mzm4890}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2549414}
\zmath{https://zbmath.org/?q=an:05628179}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 4
\pages 496--502
\crossref{https://doi.org/10.1134/S0001434609030213}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266561100021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949141193}
Linking options:
https://www.mathnet.ru/eng/mzm4890
https://doi.org/10.4213/mzm4890
https://www.mathnet.ru/eng/mzm/v85/i4/p516
This publication is cited in the following 17 articles:
G. G. Gevorgyan, V. G. Dilanyan, “Almost identities in groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 58:1 (2024), 8–12
Coulon R., Steenbock M., “Product Set Growth in Burnside Groups”, J. Ecole Polytech.-Math., 9 (2022), 463–504
V. S. Atabekyan, H. T. Aslanyan, S. T. Aslanyan, “Powers of subsets in free periodic groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 56:2 (2022), 43–48
V. S. Atabekyan, V. G. Mikaelyan, “On the Product of Subsets in Periodic Groups”, J. Contemp. Mathemat. Anal., 57:6 (2022), 395
V. S. Atabekyan, V. G. Mikaelyan, “O proizvedenii podmnozhestv v pereodicheskikh gruppakh”, Proceedings of NAS RA. Mathematics, 2022, 12
Adian S.I. Atabekyan V.S., “Periodic Products of Groups”, J. Contemp. Math. Anal.-Armen. Aca., 52:3 (2017), 111–117
S. I. Adian, V. S. Atabekyan, “$C^*$-Simplicity of $n$-Periodic Products”, Math. Notes, 99:5 (2016), 631–635
S. I. Adian, Varuzhan Atabekyan, “Characteristic properties and uniform non-amenability of $n$-periodic products of groups”, Izv. Math., 79:6 (2015), 1097–1110
Goulnara Arzhantseva, Trends in Mathematics, 1, Extended Abstracts Fall 2012, 2014, 7
Coulon R., “Growth of Periodic Quotients of Hyperbolic Groups”, Algebr. Geom. Topol., 13:6 (2013), 3111–3133
V. S. Atabekyan, “On normal subgroups in the periodic products of S. I. Adian”, Proc. Steklov Inst. Math., 274 (2011), 9–24
V. S. Atabekyan, “Nonunitarizable Periodic Groups”, Math. Notes, 87:6 (2010), 908–911
S. I. Adian, “The Burnside problem and related topics”, Russian Math. Surveys, 65:5 (2010), 805–855
A. S. Pahlevanyan, “Independent pairs in free Burnside groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2010, no. 2, 58–62
H. R. Rostami, “Non-unitarizable groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2010, no. 3, 40–43
V. S. Atabekyan, “The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$”, J. Math. Sci., 166:6 (2010), 691–703
V. S. Atabekyan, “Monomorphisms of Free Burnside Groups”, Math. Notes, 86:4 (2009), 457–462