Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 5, Pages 713–723
DOI: https://doi.org/10.4213/mzm6357
(Mi mzm6357)
 

Comonotone Approximation of Periodic Functions

G. A. Dzyubenkoa, M. G. Pleshakovb

a International Mathematical Centre
b Saratov State University named after N. G. Chernyshevsky
References:
Abstract: Suppose that a continuous $2\pi$-periodic function $f$ on the real axis $\mathbb R$  changes its monotonicity at different ordered fixed points $y_i\in[-\pi,\pi)$, $i=1,\dots,2s$, $s\in\mathbb N$. In other words, there is a set $Y:=\{y_i\}_{i\in\mathbb Z}$ of points $y_i=y_{i+2s}+2\pi$ on $\mathbb R$ such that $f$ is nondecreasing on $[y_i,y_{i-1}]$ if $i$ is odd and not increasing if $i$ is even. For each $n\ge N(Y)$, we construct a trigonometric polynomial $P_n$ of order $\le n$ changing its monotonicity at the same points $y_i\in Y$ as $f$ and such that
$$ \|f-P_n\|\le c(s)\,\omega_2\biggl(f,\frac\pi n\biggr), $$
where $N(Y)$ is a constant depending only on $Y$, $c(s)$ is a constant depending only on $s$, $\omega_2(f,\,\cdot\,)$ is the modulus of continuity of second order of the function $f$, and ${\|\cdot\|}$ is the $\max$-norm.
Keywords: periodic function, comonotone approximation, trigonometric polynomial, Jackson-type kernel, Whitney's inequality, modulus of continuity.
Received: 08.11.2006
English version:
Mathematical Notes, 2008, Volume 84, Issue 5, Pages 664–672
DOI: https://doi.org/10.1134/S0001434608110072
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: G. A. Dzyubenko, M. G. Pleshakov, “Comonotone Approximation of Periodic Functions”, Mat. Zametki, 84:5 (2008), 713–723; Math. Notes, 84:5 (2008), 664–672
Citation in format AMSBIB
\Bibitem{DzyPle08}
\by G.~A.~Dzyubenko, M.~G.~Pleshakov
\paper Comonotone Approximation of Periodic Functions
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 5
\pages 713--723
\mathnet{http://mi.mathnet.ru/mzm6357}
\crossref{https://doi.org/10.4213/mzm6357}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2500637}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 5
\pages 664--672
\crossref{https://doi.org/10.1134/S0001434608110072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262855600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59749105377}
Linking options:
  • https://www.mathnet.ru/eng/mzm6357
  • https://doi.org/10.4213/mzm6357
  • https://www.mathnet.ru/eng/mzm/v84/i5/p713
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:389
    Full-text PDF :163
    References:52
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024