Abstract:
We study the first Darboux problem for hyperbolic equations of second order with power nonlinearity. We consider the question of the existence and nonexistence of global solutions to this problem depending on the sign of the parameter before the nonlinear term and the degree of its nonlinearity. We also discuss the question of local solvability of the problem.
Keywords:
first Darboux problem, nonlinear hyperbolic equation of second order, integral equation of Volterra type, Green–Hadamard function, Leray–Schauder theorem.
Citation:
O. M. Dzhokhadze, S. S. Kharibegashvili, “First Darboux Problem for Nonlinear Hyperbolic Equations of Second Order”, Mat. Zametki, 84:5 (2008), 693–712; Math. Notes, 84:5 (2008), 646–663
\Bibitem{DzhKha08}
\by O.~M.~Dzhokhadze, S.~S.~Kharibegashvili
\paper First Darboux Problem for Nonlinear Hyperbolic Equations of Second Order
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 5
\pages 693--712
\mathnet{http://mi.mathnet.ru/mzm4078}
\crossref{https://doi.org/10.4213/mzm4078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2500636}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 5
\pages 646--663
\crossref{https://doi.org/10.1134/S0001434608110060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262855600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59749095112}
Linking options:
https://www.mathnet.ru/eng/mzm4078
https://doi.org/10.4213/mzm4078
https://www.mathnet.ru/eng/mzm/v84/i5/p693
This publication is cited in the following 8 articles:
Kharibegashvili S., “Some Local and Nonlocal Multidimensional Problems For a Class of Semilinear Hyperbolic Equations and Systems”, Mem. Differ. Equ. Math. Phys., 75 (2018), 1–91
Kharibegashvili S.S., Jokhadze O.M., “On the solvability of a boundary value problem for nonlinear wave equations in angular domains”, Differ. Equ., 52:5 (2016), 644–666
Kharibegashvili S., Jokhadze O., “The Cauchy-Darboux Problem For Wave Equations With a Nonlinear Dissipative Term”, Mem. Differ. Equ. Math. Phys., 69 (2016), 53–75
Kharibegashvili S., Jokhadze O., “The Second Darboux Problem For the Wave Equation With Integral Nonlinearity”, Trans. A Razmadze Math. Inst., 170:3 (2016), 385–394
Kharibegashvili S., Jokhadze O., “on a Zaremba Type Problem For Nonlinear Wave Equations in the Angular Domains”, Proc. A Razmadze Math. Inst., 167 (2015), 130–135
S. S. Kharibegashvili, O. M. Dzhokhadze, “The Cauchy–Goursat Problem for Wave Equations with Nonlinear Dissipative Term”, Math. Notes, 94:6 (2013), 913–929
S. S. Kharibegashvili, O. M. Dzhokhadze, “The Cauchy–Darboux problem for the one-dimensional wave equation with power nonlinearity”, Siberian Math. J., 54:6 (2013), 1120–1136
Kharibegashvili S.S., Dzhokhadze O.M., “Second Darboux Problem for the Wave Equation with a Power-Law Nonlinearity”, Differ. Equ., 49:12 (2013), 1577–1595