Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 5, Pages 652–662
DOI: https://doi.org/10.4213/mzm61
(Mi mzm61)
 

This article is cited in 4 scientific papers (total in 4 papers)

Normal Matrices and an Extension of Malyshev"s Formula

Kh. D. Ikramov, A. M. Nazari

M. V. Lomonosov Moscow State University
Full-text PDF (192 kB) Citations (4)
References:
Abstract: Let $A$ be a complex matrix of order $n$ with $n\ge3$. We associate with $A$ the $(3n\times 3n)$ matrix
$$ Q(\gamma)=\begin{pmatrix} A&\gamma_1I_n&\gamma_3I_n \\0&A&\gamma_2I_n \\0&0&A \end{pmatrix}, $$
where $\gamma_1,\gamma_2,\gamma_3$ are scalar parameters and $\gamma=(\gamma_1,\gamma_2,\gamma_3)$. Let $\sigma_i$, $1\le i\le3n$, be the singular values of $Q(\gamma)$ in the decreasing order. We prove that, for a normal matrix $A$, its 2-norm distance from the set $\mathscr M$ of matrices with a zero eigenvalue of multiplicity at least 3 is equal to
$$ \max_{\gamma_1,\gamma_2\ge0,\gamma_3\in\mathbb C} \sigma_{3n-2}(Q(\gamma)). $$
This fact is a refinement (for normal matrices) of Malyshev"s formula for the 2-norm distance from an arbitrary $(n\times n)$ matrix $A$ to the set of $(n\times n)$ matrices with a multiple zero eigenvalue.
Received: 13.05.2003
English version:
Mathematical Notes, 2004, Volume 75, Issue 5, Pages 608–616
DOI: https://doi.org/10.1023/B:MATN.0000030968.43462.98
Bibliographic databases:
UDC: 519.6
Language: Russian
Citation: Kh. D. Ikramov, A. M. Nazari, “Normal Matrices and an Extension of Malyshev"s Formula”, Mat. Zametki, 75:5 (2004), 652–662; Math. Notes, 75:5 (2004), 608–616
Citation in format AMSBIB
\Bibitem{IkrNaz04}
\by Kh.~D.~Ikramov, A.~M.~Nazari
\paper Normal Matrices and an Extension of Malyshev''s Formula
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 5
\pages 652--662
\mathnet{http://mi.mathnet.ru/mzm61}
\crossref{https://doi.org/10.4213/mzm61}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2085247}
\zmath{https://zbmath.org/?q=an:1059.15027}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 5
\pages 608--616
\crossref{https://doi.org/10.1023/B:MATN.0000030968.43462.98}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222492400002}
Linking options:
  • https://www.mathnet.ru/eng/mzm61
  • https://doi.org/10.4213/mzm61
  • https://www.mathnet.ru/eng/mzm/v75/i5/p652
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025