Abstract:
Let $A$ be a complex matrix of order $n$ with $n\ge3$. We associate with $A$ the $(3n\times 3n)$ matrix
$$
Q(\gamma)=\begin{pmatrix}
A&\gamma_1I_n&\gamma_3I_n
\\0&A&\gamma_2I_n
\\0&0&A
\end{pmatrix},
$$
where $\gamma_1,\gamma_2,\gamma_3$ are scalar parameters and $\gamma=(\gamma_1,\gamma_2,\gamma_3)$. Let $\sigma_i$, $1\le i\le3n$, be the singular values of $Q(\gamma)$ in the decreasing order. We prove that, for a normal matrix $A$, its 2-norm distance from the set $\mathscr M$ of matrices with a zero eigenvalue of multiplicity at least 3 is equal to
$$
\max_{\gamma_1,\gamma_2\ge0,\gamma_3\in\mathbb C}
\sigma_{3n-2}(Q(\gamma)).
$$
This fact is a refinement (for normal matrices) of Malyshev"s formula for the 2-norm distance from an arbitrary $(n\times n)$ matrix $A$ to the set of $(n\times n)$ matrices with a multiple zero eigenvalue.
Citation:
Kh. D. Ikramov, A. M. Nazari, “Normal Matrices and an Extension of Malyshev"s Formula”, Mat. Zametki, 75:5 (2004), 652–662; Math. Notes, 75:5 (2004), 608–616
\Bibitem{IkrNaz04}
\by Kh.~D.~Ikramov, A.~M.~Nazari
\paper Normal Matrices and an Extension of Malyshev''s Formula
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 5
\pages 652--662
\mathnet{http://mi.mathnet.ru/mzm61}
\crossref{https://doi.org/10.4213/mzm61}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2085247}
\zmath{https://zbmath.org/?q=an:1059.15027}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 5
\pages 608--616
\crossref{https://doi.org/10.1023/B:MATN.0000030968.43462.98}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222492400002}
Linking options:
https://www.mathnet.ru/eng/mzm61
https://doi.org/10.4213/mzm61
https://www.mathnet.ru/eng/mzm/v75/i5/p652
This publication is cited in the following 4 articles:
Armentia G. Gracia J.-M. Velasco F.-E., “Nearest Matrix With a Prescribed Eigenvalue of Bounded Multiplicities”, Linear Alg. Appl., 592 (2020), 188–209
Lippert R.A., “Fixing multiple eigenvalues by a minimal perturbation”, Linear Algebra and Its Applications, 432:7 (2010), 1785–1817
Kh. D. Ikramov, A. M. Nazari, “Justification of a Malyshev-Type Formula in the Nonnormal Case”, Math. Notes, 78:2 (2005), 219–227
Kh. D. Ikramov, A. M. Nazari, “On the calculation of the closest matrix with a triple zero eigenvalue”, Comput. Math. Math. Phys., 44:12 (2004), 2011–2016