|
This article is cited in 4 scientific papers (total in 4 papers)
Normal Matrices and an Extension of Malyshev"s Formula
Kh. D. Ikramov, A. M. Nazari M. V. Lomonosov Moscow State University
Abstract:
Let $A$ be a complex matrix of order $n$ with $n\ge3$. We associate with $A$ the $(3n\times 3n)$ matrix
$$
Q(\gamma)=\begin{pmatrix}
A&\gamma_1I_n&\gamma_3I_n
\\0&A&\gamma_2I_n
\\0&0&A
\end{pmatrix},
$$
where $\gamma_1,\gamma_2,\gamma_3$ are scalar parameters and $\gamma=(\gamma_1,\gamma_2,\gamma_3)$. Let $\sigma_i$, $1\le i\le3n$, be the singular values of $Q(\gamma)$ in the decreasing order. We prove that, for a normal matrix $A$, its 2-norm distance from the set $\mathscr M$ of matrices with a zero eigenvalue of multiplicity at least 3 is equal to
$$
\max_{\gamma_1,\gamma_2\ge0,\gamma_3\in\mathbb C}
\sigma_{3n-2}(Q(\gamma)).
$$
This fact is a refinement (for normal matrices) of Malyshev"s formula for the 2-norm distance from an arbitrary $(n\times n)$ matrix $A$ to the set of $(n\times n)$ matrices with a multiple zero eigenvalue.
Received: 13.05.2003
Citation:
Kh. D. Ikramov, A. M. Nazari, “Normal Matrices and an Extension of Malyshev"s Formula”, Mat. Zametki, 75:5 (2004), 652–662; Math. Notes, 75:5 (2004), 608–616
Linking options:
https://www.mathnet.ru/eng/mzm61https://doi.org/10.4213/mzm61 https://www.mathnet.ru/eng/mzm/v75/i5/p652
|
|