Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 5, Pages 663–669
DOI: https://doi.org/10.4213/mzm62
(Mi mzm62)
 

Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain

A. Yu. Kolesova, A. N. Kulikova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study the problem of the attractors of the boundary-value problem
$$ u_t=\sqrt \varepsilon (D_0 + \sqrt \varepsilon D_1)\Delta u + (A_0 + \varepsilon A_1)u + F(u),\qquad u_x|_{x=0,x=l_1} = u_y|_{y=0,y=l_2}=0, $$
where $0\le\varepsilon\ll 1$, $u\in \mathbb{R}^N$, $N\ge 3$, $\Delta $ is the Laplace operator, and $-D_0$ is the Hurwitz matrix. For such a boundary-value problem, under certain assumptions, we establish the existence of any finite fixed number of stable cycles, provided that $\varepsilon>0$ is chosen appropriately small. In other words, it is shown that this boundary-value problem involves the buffer phenomenon.
Received: 25.03.2002
Revised: 09.07.2003
English version:
Mathematical Notes, 2004, Volume 75, Issue 5, Pages 617–622
DOI: https://doi.org/10.1023/B:MATN.0000030969.36250.93
Bibliographic databases:
UDC: 517.926
Language: Russian
Citation: A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain”, Mat. Zametki, 75:5 (2004), 663–669; Math. Notes, 75:5 (2004), 617–622
Citation in format AMSBIB
\Bibitem{KolKulRoz04}
\by A.~Yu.~Kolesov, A.~N.~Kulikov, N.~Kh.~Rozov
\paper Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 5
\pages 663--669
\mathnet{http://mi.mathnet.ru/mzm62}
\crossref{https://doi.org/10.4213/mzm62}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2085248}
\zmath{https://zbmath.org/?q=an:1138.37337}
\elib{https://elibrary.ru/item.asp?id=6618269}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 5
\pages 617--622
\crossref{https://doi.org/10.1023/B:MATN.0000030969.36250.93}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222492400003}
Linking options:
  • https://www.mathnet.ru/eng/mzm62
  • https://doi.org/10.4213/mzm62
  • https://www.mathnet.ru/eng/mzm/v75/i5/p663
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025