Abstract:
We consider the degrees of the Abel–Jacobi maps for real hyperelliptic surfaces of genus 2 and 3. The restrictions of the maps to the symmetric square and the symmetric cube, respectively, of the real locus of the given Riemann surface are studied.
Citation:
O. V. Danilova, V. A. Krasnov, “The Abel–Jacobi Map for Real Hyperelliptic Surfaces of Genus 3”, Mat. Zametki, 75:5 (2004), 643–651; Math. Notes, 75:5 (2004), 601–607
\Bibitem{DanKra04}
\by O.~V.~Danilova, V.~A.~Krasnov
\paper The Abel--Jacobi Map for Real Hyperelliptic Surfaces of Genus 3
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 5
\pages 643--651
\mathnet{http://mi.mathnet.ru/mzm59}
\crossref{https://doi.org/10.4213/mzm59}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2085246}
\zmath{https://zbmath.org/?q=an:1057.14069}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 5
\pages 601--607
\crossref{https://doi.org/10.1023/B:MATN.0000030967.77252.59}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222492400001}
Linking options:
https://www.mathnet.ru/eng/mzm59
https://doi.org/10.4213/mzm59
https://www.mathnet.ru/eng/mzm/v75/i5/p643
This publication is cited in the following 3 articles:
V. A. Krasnov, “The real Plücker–Klein map”, Izv. Math., 86:3 (2022), 456–507
Astashkin S. V., Sukochev F. A., “Series of independent random variables in rearrangement invariant spaces: An operator approach”, Israel J. Math., 145 (2005), 125–156
O. V. Danilova, “Abel–Jacobi Mapping for Real Hyperelliptic Riemann Surfaces”, Math. Notes, 76:6 (2004), 778–783