Abstract:
For a pair of divergence-free vector fields $\mathbf B$ and $\widetilde{\mathbf B}$ respectively localized in two oriented tubes $U$ and $\widetilde U$ in $\mathbb R^3$, we propose a fourth-order integral $W$ and describe the dependence between the integral $W$ and a higher topological invariant $\beta=\beta(l,\widetilde l)$ (namely, the generalized Sato–Levine invariant). The new integral is a generalization of the well-known integral, which was defined earlier for two tubes with zero linking number.
Keywords:
topological invariant, Sato–Levine invariant, oriented magnetic tube, linking number, magnetic hydrodynamics, Lie derivative, Massey product, gradient field.
Citation:
P. M. Akhmet'ev, O. V. Kunakovskaya, “Integral Formula for a Generalized Sato–Levine Invariant in Magnetic Hydrodynamics”, Mat. Zametki, 85:4 (2009), 524–537; Math. Notes, 85:4 (2009), 503–514
\Bibitem{AkhKun09}
\by P.~M.~Akhmet'ev, O.~V.~Kunakovskaya
\paper Integral Formula for a Generalized Sato--Levine Invariant in Magnetic Hydrodynamics
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 4
\pages 524--537
\mathnet{http://mi.mathnet.ru/mzm4118}
\crossref{https://doi.org/10.4213/mzm4118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2549415}
\zmath{https://zbmath.org/?q=an:1190.53071}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 4
\pages 503--514
\crossref{https://doi.org/10.1134/S0001434609030225}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266561100022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949145996}
Linking options:
https://www.mathnet.ru/eng/mzm4118
https://doi.org/10.4213/mzm4118
https://www.mathnet.ru/eng/mzm/v85/i4/p524
This publication is cited in the following 4 articles:
Faik Mayah, Nisreen Alokbi, Ali Sabeeh Rasheed, “New Invariant Quantity To Measure The Entanglement In The Braids”, J. Nig. Soc. Phys. Sci., 2022, 1051
Machon T., “The Godbillon-Vey Invariant as Topological Vorticity Compression and Obstruction to Steady Flow in Ideal Fluids”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 476:2239 (2020), 20190851
P. M. Akhmet'ev, “On Arnold's Problem on Higher Analogs of the Asymptotic HOPF Invariant”, J Math Sci, 208:1 (2015), 24
P. M. Akhmet'ev, “On Asymptotic Higher Analogs of the Helicity Invariant in Magnetohydrodynamics”, Journal of Mathematical Sciences, 200:1 (2014), 12–25