Abstract:
We consider an operator function F defined on the interval [σ,τ]⊂R whose values are semibounded self-adjoint operators in the Hilbert space H. To the operator function F we assign quantities NF and νF(λ) that are, respectively, the number of eigenvalues of the operator function F on the half-interval [σ,τ) and the number of negative eigenvalues of the operator F(λ) for an arbitrary λ∈[σ,τ]. We present conditions under which the estimate NF⩾νF(τ)−νF(σ) holds. We also establish conditions for the relation NF=νF(τ)−νF(σ) to hold. The results obtained are applied to ordinary differential operator functions on a finite interval.
Citation:
A. A. Vladimirov, “Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions”, Mat. Zametki, 74:6 (2003), 838–847; Math. Notes, 74:6 (2003), 794–802
\Bibitem{Vla03}
\by A.~A.~Vladimirov
\paper Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 6
\pages 838--847
\mathnet{http://mi.mathnet.ru/mzm321}
\crossref{https://doi.org/10.4213/mzm321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2054002}
\zmath{https://zbmath.org/?q=an:1131.47014}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 6
\pages 794--802
\crossref{https://doi.org/10.1023/B:MATN.0000009015.40046.63}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187966900023}
Linking options:
https://www.mathnet.ru/eng/mzm321
https://doi.org/10.4213/mzm321
https://www.mathnet.ru/eng/mzm/v74/i6/p838
This publication is cited in the following 7 articles:
A. A. Vladimirov, “Representation Theorems and Variational Principles for Self-Adjoint Operator Matrices”, Math. Notes, 101:4 (2017), 619–630
Hashimoglu I., “An Evaluation of Powers of the Negative Spectrum of Schrodinger Operator Equation With a Singularity At Zero”, Bound. Value Probl., 2017, 160
Hashimoglu I., “Asymptotics of the Number of Eigenvalues of One-Term Second-Order Operator Equations”, Adv. Differ. Equ., 2015, 335
A. A. Vladimirov, I. A. Shejpak, “Eigenvalue asymptotics of the problem of high odd order with dicrete self-similar weight”, St. Petersburg Math. J., 24:2 (2013), 263–273
M. I. Muminov, “Formula for the number of eigenvalues of a three-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 164:1 (2010), 869–882
M. I. Muminov, “Expression for the Number of Eigenvalues of a Friedrichs Model”, Math. Notes, 82:1 (2007), 67–74
J. Ben Amara, A. A. Vladimirov, “On a fourth-order problem with spectral and physical parameters in the boundary condition”, Izv. Math., 68:4 (2004), 645–658