Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 74, Issue 6, Pages 838–847
DOI: https://doi.org/10.4213/mzm321
(Mi mzm321)
 

This article is cited in 7 scientific papers (total in 7 papers)

Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions

A. A. Vladimirov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (224 kB) Citations (7)
References:
Abstract: We consider an operator function $F$ defined on the interval $[\sigma,\tau]\subset \mathbb R$ whose values are semibounded self-adjoint operators in the Hilbert space $\mathfrak H$. To the operator function $F$ we assign quantities $\mathscr N_F$ and $\nu_F(\lambda)$ that are, respectively, the number of eigenvalues of the operator function $F$ on the half-interval $[\sigma,\tau)$ and the number of negative eigenvalues of the operator $F(\lambda)$ for an arbitrary $\lambda\in[\sigma,\tau]$. We present conditions under which the estimate $\mathscr N_F\geqslant\nu_F(\tau)-\nu_F(\sigma)$ holds. We also establish conditions for the relation $\mathscr N_F=\nu_F(\tau)-\nu_F(\sigma)$ to hold. The results obtained are applied to ordinary differential operator functions on a finite interval.
Received: 30.09.2002
Revised: 22.05.2003
English version:
Mathematical Notes, 2003, Volume 74, Issue 6, Pages 794–802
DOI: https://doi.org/10.1023/B:MATN.0000009015.40046.63
Bibliographic databases:
Language: Russian
Citation: A. A. Vladimirov, “Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions”, Mat. Zametki, 74:6 (2003), 838–847; Math. Notes, 74:6 (2003), 794–802
Citation in format AMSBIB
\Bibitem{Vla03}
\by A.~A.~Vladimirov
\paper Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 6
\pages 838--847
\mathnet{http://mi.mathnet.ru/mzm321}
\crossref{https://doi.org/10.4213/mzm321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2054002}
\zmath{https://zbmath.org/?q=an:1131.47014}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 6
\pages 794--802
\crossref{https://doi.org/10.1023/B:MATN.0000009015.40046.63}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187966900023}
Linking options:
  • https://www.mathnet.ru/eng/mzm321
  • https://doi.org/10.4213/mzm321
  • https://www.mathnet.ru/eng/mzm/v74/i6/p838
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:515
    Full-text PDF :226
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024