Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 74, Issue 6, Pages 838–847
DOI: https://doi.org/10.4213/mzm321
(Mi mzm321)
 

This article is cited in 7 scientific papers (total in 7 papers)

Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions

A. A. Vladimirov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (224 kB) Citations (7)
References:
Abstract: We consider an operator function F defined on the interval [σ,τ]R whose values are semibounded self-adjoint operators in the Hilbert space H. To the operator function F we assign quantities NF and νF(λ) that are, respectively, the number of eigenvalues of the operator function F on the half-interval [σ,τ) and the number of negative eigenvalues of the operator F(λ) for an arbitrary λ[σ,τ]. We present conditions under which the estimate NFνF(τ)νF(σ) holds. We also establish conditions for the relation NF=νF(τ)νF(σ) to hold. The results obtained are applied to ordinary differential operator functions on a finite interval.
Received: 30.09.2002
Revised: 22.05.2003
English version:
Mathematical Notes, 2003, Volume 74, Issue 6, Pages 794–802
DOI: https://doi.org/10.1023/B:MATN.0000009015.40046.63
Bibliographic databases:
Language: Russian
Citation: A. A. Vladimirov, “Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions”, Mat. Zametki, 74:6 (2003), 838–847; Math. Notes, 74:6 (2003), 794–802
Citation in format AMSBIB
\Bibitem{Vla03}
\by A.~A.~Vladimirov
\paper Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 6
\pages 838--847
\mathnet{http://mi.mathnet.ru/mzm321}
\crossref{https://doi.org/10.4213/mzm321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2054002}
\zmath{https://zbmath.org/?q=an:1131.47014}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 6
\pages 794--802
\crossref{https://doi.org/10.1023/B:MATN.0000009015.40046.63}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187966900023}
Linking options:
  • https://www.mathnet.ru/eng/mzm321
  • https://doi.org/10.4213/mzm321
  • https://www.mathnet.ru/eng/mzm/v74/i6/p838
  • This publication is cited in the following 7 articles:
    1. A. A. Vladimirov, “Representation Theorems and Variational Principles for Self-Adjoint Operator Matrices”, Math. Notes, 101:4 (2017), 619–630  mathnet  crossref  crossref  mathscinet  isi  elib
    2. Hashimoglu I., “An Evaluation of Powers of the Negative Spectrum of Schrodinger Operator Equation With a Singularity At Zero”, Bound. Value Probl., 2017, 160  crossref  mathscinet  zmath  isi  scopus  scopus
    3. Hashimoglu I., “Asymptotics of the Number of Eigenvalues of One-Term Second-Order Operator Equations”, Adv. Differ. Equ., 2015, 335  crossref  mathscinet  isi  scopus  scopus
    4. A. A. Vladimirov, I. A. Shejpak, “Eigenvalue asymptotics of the problem of high odd order with dicrete self-similar weight”, St. Petersburg Math. J., 24:2 (2013), 263–273  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    5. M. I. Muminov, “Formula for the number of eigenvalues of a three-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 164:1 (2010), 869–882  mathnet  crossref  crossref  adsnasa  isi
    6. M. I. Muminov, “Expression for the Number of Eigenvalues of a Friedrichs Model”, Math. Notes, 82:1 (2007), 67–74  mathnet  crossref  crossref  mathscinet  isi  elib
    7. J. Ben Amara, A. A. Vladimirov, “On a fourth-order problem with spectral and physical parameters in the boundary condition”, Izv. Math., 68:4 (2004), 645–658  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:558
    Full-text PDF :251
    References:82
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025