Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 74, Issue 6, Pages 827–837
DOI: https://doi.org/10.4213/mzm311
(Mi mzm311)
 

On the Rogers–Ramanujan Periodic Continued Fraction

V. I. Buslaeva, S. F. Buslaevab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Institute of Mathematics, Ukrainian National Academy of Sciences
References:
Abstract: In the paper, the convergence properties of the Rogers–Ramanujan continued fraction
$$ 1+\frac{qz}{1+\frac{q^2z}{1+\cdots}} $$
are studied for $q=\exp (2\pi i\tau)$, where $\tau$ is a rational number. It is shown that the function $H_q$ to which the fraction converges is a counterexample to the Stahl conjecture (the hyperelliptic version of the well-known Baker–Gammel–Wills conjecture). It is also shown that, for any rational $\tau$, the number of spurious poles of the diagonal Padé approximants of the hyperelliptic function $H_q$ does not exceed one half of its genus.
Received: 05.04.2003
English version:
Mathematical Notes, 2003, Volume 74, Issue 6, Pages 783–793
DOI: https://doi.org/10.1023/B:MATN.0000009014.24386.11
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Buslaev, S. F. Buslaeva, “On the Rogers–Ramanujan Periodic Continued Fraction”, Mat. Zametki, 74:6 (2003), 827–837; Math. Notes, 74:6 (2003), 783–793
Citation in format AMSBIB
\Bibitem{BusBus03}
\by V.~I.~Buslaev, S.~F.~Buslaeva
\paper On the Rogers--Ramanujan Periodic Continued Fraction
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 6
\pages 827--837
\mathnet{http://mi.mathnet.ru/mzm311}
\crossref{https://doi.org/10.4213/mzm311}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2054001}
\zmath{https://zbmath.org/?q=an:1107.30302}
\elib{https://elibrary.ru/item.asp?id=13433032}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 6
\pages 783--793
\crossref{https://doi.org/10.1023/B:MATN.0000009014.24386.11}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187966900022}
Linking options:
  • https://www.mathnet.ru/eng/mzm311
  • https://doi.org/10.4213/mzm311
  • https://www.mathnet.ru/eng/mzm/v74/i6/p827
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024