Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 74, Issue 6, Pages 848–857
DOI: https://doi.org/10.4213/mzm322
(Mi mzm322)
 

This article is cited in 22 scientific papers (total in 22 papers)

Integrals, Solutions, and Existence Problems for Laplace Transformations of Linear Hyperbolic Systems

A. V. Zhibera, S. Ya. Startsevb

a Institute of Mechanics, Ufa Centre of the Russian Academy of Sciences
b Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: We generalize the notions of Laplace transformations and Laplace invariants for systems of hyperbolic equations and study conditions for their existence. We prove that a hyperbolic system admits the Laplace transformation if and only if there exists a matrix of rank $k$ mapping any vector whose components are functions of one of the independent variables into a solution of this system, where $k$ is the defect of the corresponding Laplace invariant. We show that a chain of Laplace invariants exists only if the hyperbolic system has a entire collection of integrals and the dual system has a entire collection of solutions depending on arbitrary functions. An example is given showing that these conditions are not sufficient for the existence of a Laplace transformation.
Received: 01.08.2002
English version:
Mathematical Notes, 2003, Volume 74, Issue 6, Pages 803–811
DOI: https://doi.org/10.1023/B:MATN.0000009016.91968.ed
Bibliographic databases:
UDC: 517.956.32
Language: Russian
Citation: A. V. Zhiber, S. Ya. Startsev, “Integrals, Solutions, and Existence Problems for Laplace Transformations of Linear Hyperbolic Systems”, Mat. Zametki, 74:6 (2003), 848–857; Math. Notes, 74:6 (2003), 803–811
Citation in format AMSBIB
\Bibitem{ZhiSta03}
\by A.~V.~Zhiber, S.~Ya.~Startsev
\paper Integrals, Solutions, and Existence Problems for Laplace Transformations of Linear Hyperbolic Systems
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 6
\pages 848--857
\mathnet{http://mi.mathnet.ru/mzm322}
\crossref{https://doi.org/10.4213/mzm322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2054003}
\zmath{https://zbmath.org/?q=an:1109.35305}
\elib{https://elibrary.ru/item.asp?id=13420384}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 6
\pages 803--811
\crossref{https://doi.org/10.1023/B:MATN.0000009016.91968.ed}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187966900024}
Linking options:
  • https://www.mathnet.ru/eng/mzm322
  • https://doi.org/10.4213/mzm322
  • https://www.mathnet.ru/eng/mzm/v74/i6/p848
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024