Abstract:
We study quasiperiodic (finite-gap) solutions of the Volterra chain satisfying an integrable boundary condition on the semiaxis. From the set of general finite-gap solutions, only those corresponding to the boundary-value problem are singled out, the relevant condition being expressed as a system of algebraic equations.
Citation:
V. L. Vereshchagin, “Integrable boundary-value problem for the Volterra chain on the half-axis”, Mat. Zametki, 80:5 (2006), 696–700; Math. Notes, 80:5 (2006), 658–662
\Bibitem{Ver06}
\by V.~L.~Vereshchagin
\paper Integrable boundary-value problem for the Volterra chain on the half-axis
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 5
\pages 696--700
\mathnet{http://mi.mathnet.ru/mzm3078}
\crossref{https://doi.org/10.4213/mzm3078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2311583}
\zmath{https://zbmath.org/?q=an:1123.37047}
\elib{https://elibrary.ru/item.asp?id=9309625}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 5
\pages 658--662
\crossref{https://doi.org/10.1007/s11006-006-0186-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243368900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845709512}
Linking options:
https://www.mathnet.ru/eng/mzm3078
https://doi.org/10.4213/mzm3078
https://www.mathnet.ru/eng/mzm/v80/i5/p696
This publication is cited in the following 2 articles:
A. Kh. Khanmamedov, A. M. Guseinov, M. M. Vekilov, “Algorithm for solving the Cauchy problem for one infinite-dimensional system of nonlinear differential equations”, Comput. Math. Math. Phys., 59:2 (2019), 236–240
I. M. Guseinov, Ag. Kh. Khanmamedov, “An algorithm for solving the Cauchy problem for a finite Langmuir lattice”, Comput. Math. Math. Phys., 49:9 (2009), 1516–1520