Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 5, Pages 683–695
DOI: https://doi.org/10.4213/mzm3077
(Mi mzm3077)
 

This article is cited in 14 scientific papers (total in 14 papers)

Spherical convolution operators in spaces of variable Hölder order

B. G. Vakulov

Rostov State University
References:
Abstract: In this paper, we study the images of operators of the type of spherical potential of complex order and of spherical convolutions with kernels depending on the inner product and having a spherical harmonic multiplier with a given asymptotics at infinity. Using theorems on the action of these operators in Hölder-variable spaces, we construct isomorphisms of these spaces. In Hölder spaces of variable order, we study the action of spherical potentials with singularities at the poles of the sphere. Using stereographic projection, we obtain similar isomorphisms of Hölder-variable spaces with respect to $n$-dimensional Euclidean space (in the case of its one-point compactification) with some power weights.
Received: 07.08.2003
English version:
Mathematical Notes, 2006, Volume 80, Issue 5, Pages 645–657
DOI: https://doi.org/10.1007/s11006-006-0185-5
Bibliographic databases:
UDC: 517.518
Language: Russian
Citation: B. G. Vakulov, “Spherical convolution operators in spaces of variable Hölder order”, Mat. Zametki, 80:5 (2006), 683–695; Math. Notes, 80:5 (2006), 645–657
Citation in format AMSBIB
\Bibitem{Vak06}
\by B.~G.~Vakulov
\paper Spherical convolution operators in spaces of variable H\"older order
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 5
\pages 683--695
\mathnet{http://mi.mathnet.ru/mzm3077}
\crossref{https://doi.org/10.4213/mzm3077}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2311582}
\zmath{https://zbmath.org/?q=an:1139.47027}
\elib{https://elibrary.ru/item.asp?id=9309624}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 5
\pages 645--657
\crossref{https://doi.org/10.1007/s11006-006-0185-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243368900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845634432}
Linking options:
  • https://www.mathnet.ru/eng/mzm3077
  • https://doi.org/10.4213/mzm3077
  • https://www.mathnet.ru/eng/mzm/v80/i5/p683
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:634
    Full-text PDF :273
    References:85
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024