Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 77, Issue 1, Pages 16–27
DOI: https://doi.org/10.4213/mzm2465
(Mi mzm2465)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotics of the reduced logarithmic capacity of a narrow cylinder

I. I. Argatov

Admiral Makarov State Maritime Academy
Full-text PDF (211 kB) Citations (1)
References:
Abstract: We consider the Dirichlet problem for the Laplace operator in the exterior of a narrow infinite cylinder with periodically varying directrix. The solution is sought in the class of functions logarithmically increasing as the distance from the cylinder is increased. The reduced logarithmic capacity is defined as a generalization of the logarithmic capacity (of the outer conformal radius).We construct and justify the asymptotics of the solution of the problem as the ratio of the diameter of the cross-section of the cylinder to its period tends to zero.
Received: 21.02.2003
English version:
Mathematical Notes, 2005, Volume 77, Issue 1, Pages 15–25
DOI: https://doi.org/10.1007/s11006-005-0002-6
Bibliographic databases:
UDC: 517.946
Language: Russian
Citation: I. I. Argatov, “Asymptotics of the reduced logarithmic capacity of a narrow cylinder”, Mat. Zametki, 77:1 (2005), 16–27; Math. Notes, 77:1 (2005), 15–25
Citation in format AMSBIB
\Bibitem{Arg05}
\by I.~I.~Argatov
\paper Asymptotics of the reduced logarithmic capacity of a narrow cylinder
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 1
\pages 16--27
\mathnet{http://mi.mathnet.ru/mzm2465}
\crossref{https://doi.org/10.4213/mzm2465}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2158694}
\zmath{https://zbmath.org/?q=an:1077.35027}
\elib{https://elibrary.ru/item.asp?id=9140719}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 1
\pages 15--25
\crossref{https://doi.org/10.1007/s11006-005-0002-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227418800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20144373897}
Linking options:
  • https://www.mathnet.ru/eng/mzm2465
  • https://doi.org/10.4213/mzm2465
  • https://www.mathnet.ru/eng/mzm/v77/i1/p16
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025