Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 77, Issue 1, Pages 3–15
DOI: https://doi.org/10.4213/mzm2464
(Mi mzm2464)
 

This article is cited in 1 scientific paper (total in 2 paper)

Szegő theorem, Carathéodory domains, and boundedness of calculating functionals

F. G. Abdullaeva, A. A. Dovgosheyb

a University of Mersin
b Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
Full-text PDF (257 kB) Citations (2)
References:
Abstract: Suppose that $G$ is a bounded simply connected domain on the plane with boundary $\Gamma$, $z_0\in G$, $\omega$ is the harmonic measure with respect to $z_0$, on $\Gamma$, $\mu$ is a finite Borel measure with support $\operatorname{supp}(\mu)\subseteq\Gamma$, $\mu_a+\mu_s$ is the decomposition of $\mu$ with respect to $\omega$, and $t$ is a positive real number. We solve the following problem: for what geometry of the domain $G$ is the condition
$$ \int\ln\biggl(\frac{d\mu_a}{d\omega}\biggr)\,d\omega=-\infty $$
equivalent to the completeness of the polynomials in$L^t(\mu)$ or to the unboundedness of the calculating functional $p\to p(z_0)$, where $p$ is a polynomial in $L^t(\mu)$? We study the relationship between the densities of the algebras of rational functions in $L^t(\mu)$ and $C(\Gamma)$. For $t=2$, we obtain a sufficient criterion for the unboundedness of the calculating functional in the case of finite Borel measures with support of an arbitrary geometry.
Received: 26.09.2002
English version:
Mathematical Notes, 2005, Volume 77, Issue 1, Pages 3–14
DOI: https://doi.org/10.1007/s11006-005-0001-7
Bibliographic databases:
UDC: 517.53
Language: Russian
Citation: F. G. Abdullaev, A. A. Dovgoshey, “Szegő theorem, Carathéodory domains, and boundedness of calculating functionals”, Mat. Zametki, 77:1 (2005), 3–15; Math. Notes, 77:1 (2005), 3–14
Citation in format AMSBIB
\Bibitem{AbdDov05}
\by F.~G.~Abdullaev, A.~A.~Dovgoshey
\paper Szeg\H o theorem, Carath\'eodory domains, and boundedness of calculating functionals
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 1
\pages 3--15
\mathnet{http://mi.mathnet.ru/mzm2464}
\crossref{https://doi.org/10.4213/mzm2464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2158693}
\zmath{https://zbmath.org/?q=an:1079.30053}
\elib{https://elibrary.ru/item.asp?id=9140718}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 1
\pages 3--14
\crossref{https://doi.org/10.1007/s11006-005-0001-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227418800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20144368863}
Linking options:
  • https://www.mathnet.ru/eng/mzm2464
  • https://doi.org/10.4213/mzm2464
  • https://www.mathnet.ru/eng/mzm/v77/i1/p3
    Erratum
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025