Abstract:
The following elliptic equations with pp-Laplacian
−Δpu=λg(x)|u|p−2u+f(x)|u|γ−2u−Δpu=λg(x)|u|p−2u+f(x)|u|γ−2u
are considered in the entire space RN and in the bounded domain with the Dirichlet boundary conditions. By the fibering method for the basic positive solutions of these equations, we derive the following asymptotic formula
uλ=(λ1−λ)1/(γ−p)u1+o((λ1−λ)1/(γ−p))
for λ↑λ1, where λ1 is the first eigenvalue and u1 is the corresponding eigenfunction of nonperturbed problem (f=0).
Citation:
Ya. Sh. Il'yasov, “On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem”, Mat. Zametki, 64:4 (1998), 543–548; Math. Notes, 64:4 (1998), 471–475
\Bibitem{Ily98}
\by Ya.~Sh.~Il'yasov
\paper On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 4
\pages 543--548
\mathnet{http://mi.mathnet.ru/mzm1428}
\crossref{https://doi.org/10.4213/mzm1428}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1687228}
\zmath{https://zbmath.org/?q=an:0926.35108}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 4
\pages 471--475
\crossref{https://doi.org/10.1007/BF02314627}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079258700026}
Linking options:
https://www.mathnet.ru/eng/mzm1428
https://doi.org/10.4213/mzm1428
https://www.mathnet.ru/eng/mzm/v64/i4/p543
This publication is cited in the following 1 articles:
Il'yasov Ya., Runst T., “Positive Solutions of Indefinite Equations with P-Laplacian and Supercritical Nonlinearity”, Complex Var. Elliptic Equ., 56:10-11, SI (2011), 945–954