Abstract:
Local (qualitative) singularities of a special class of dynamical systems with shock interactions are classified. For the first four of the specified types of local singularities, certain properties of the qualitative structure are described and used to establish the topological equivalence of the corresponding singularities.
Citation:
S. P. Gorbikov, “Local singularities of dynamical systems with shock interactions”, Mat. Zametki, 64:4 (1998), 531–542; Math. Notes, 64:4 (1998), 461–470
This publication is cited in the following 6 articles:
S. P. Gorbikov, “Auxiliary sliding motions of vibro-impact systems”, Autom. Remote Control, 81:8 (2020), 1413–1430
Otstavnov E.I., “Issledovanie ustoichivosti nepodvizhnykh tochek sistem s transversalnym odnostoronnim ogranicheniem”, Vestnik MGSU, 2011, no. 4, 253–253
Fixed points stability investigation for systems with transversal one-sided restrictions
Otstavnov E.I., “Issledovanie ustoichivosti nepodvizhnykh tochek sistem s kasatelnym odnostoronnim ogranicheniem po pervomu priblizheniyu”, Vestnik MGSU, 2011, no. 4, 260–260
Linear approximation fixed points stability investigation of systems with tangent one-sided restrictions
S. P. Gorbikov, A. V. Men'shenina, “Statistical description of the limiting set for chaotic motions of the vibro-impact system”, Autom. Remote Control, 68:10 (2007), 1794–1800
Gorbikov, SP, “Bifurcation resulting in chaotic motions in dynamical systems with shock interactions”, Differential Equations, 41:8 (2005), 1097
S. P. Gorbikov, “Topological Equivalence of Local Singularities of Particular Type for Dynamical Systems with Shock Interactions”, Math. Notes, 70:2 (2001), 163–174