Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 64, Issue 4, Pages 531–542
DOI: https://doi.org/10.4213/mzm1427
(Mi mzm1427)
 

This article is cited in 6 scientific papers (total in 6 papers)

Local singularities of dynamical systems with shock interactions

S. P. Gorbikov

Research Institute for Applied Mathematics and Cybernetics, N. I. Lobachevski State University of Nizhnii Novgorod
References:
Abstract: Local (qualitative) singularities of a special class of dynamical systems with shock interactions are classified. For the first four of the specified types of local singularities, certain properties of the qualitative structure are described and used to establish the topological equivalence of the corresponding singularities.
Received: 26.09.1995
Revised: 28.01.1998
English version:
Mathematical Notes, 1998, Volume 64, Issue 4, Pages 461–470
DOI: https://doi.org/10.1007/BF02314626
Bibliographic databases:
UDC: 517.938.5
Language: Russian
Citation: S. P. Gorbikov, “Local singularities of dynamical systems with shock interactions”, Mat. Zametki, 64:4 (1998), 531–542; Math. Notes, 64:4 (1998), 461–470
Citation in format AMSBIB
\Bibitem{Gor98}
\by S.~P.~Gorbikov
\paper Local singularities of dynamical systems with shock interactions
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 4
\pages 531--542
\mathnet{http://mi.mathnet.ru/mzm1427}
\crossref{https://doi.org/10.4213/mzm1427}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1687232}
\zmath{https://zbmath.org/?q=an:0926.34031}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 4
\pages 461--470
\crossref{https://doi.org/10.1007/BF02314626}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079258700025}
Linking options:
  • https://www.mathnet.ru/eng/mzm1427
  • https://doi.org/10.4213/mzm1427
  • https://www.mathnet.ru/eng/mzm/v64/i4/p531
  • This publication is cited in the following 6 articles:
    1. S. P. Gorbikov, “Auxiliary sliding motions of vibro-impact systems”, Autom. Remote Control, 81:8 (2020), 1413–1430  mathnet  crossref  crossref  isi  elib  elib
    2. Otstavnov E.I., “Issledovanie ustoichivosti nepodvizhnykh tochek sistem s transversalnym odnostoronnim ogranicheniem”, Vestnik MGSU, 2011, no. 4, 253–253 Fixed points stability investigation for systems with transversal one-sided restrictions  elib
    3. Otstavnov E.I., “Issledovanie ustoichivosti nepodvizhnykh tochek sistem s kasatelnym odnostoronnim ogranicheniem po pervomu priblizheniyu”, Vestnik MGSU, 2011, no. 4, 260–260 Linear approximation fixed points stability investigation of systems with tangent one-sided restrictions  elib
    4. S. P. Gorbikov, A. V. Men'shenina, “Statistical description of the limiting set for chaotic motions of the vibro-impact system”, Autom. Remote Control, 68:10 (2007), 1794–1800  mathnet  crossref  mathscinet  zmath
    5. Gorbikov, SP, “Bifurcation resulting in chaotic motions in dynamical systems with shock interactions”, Differential Equations, 41:8 (2005), 1097  mathnet  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    6. S. P. Gorbikov, “Topological Equivalence of Local Singularities of Particular Type for Dynamical Systems with Shock Interactions”, Math. Notes, 70:2 (2001), 163–174  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:320
    Full-text PDF :196
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025