Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 64, Issue 4, Pages 549–557
DOI: https://doi.org/10.4213/mzm1429
(Mi mzm1429)
 

This article is cited in 10 scientific papers (total in 10 papers)

Integration over a fractal curve and the jump problem

B. A. Kats

Kazan State Academy of Architecture and Construction
References:
Abstract: A definition of integration, i.e., a generalization of a functional of the form
u(z)Γf(z)u(z)dz
to the case where Γ is a fractal curve on the complex plane and f(z) (integration density) is a function defined on this curve is given. The existence and uniqueness of the integral with given density are examined.
Received: 17.07.1996
Revised: 20.11.1997
English version:
Mathematical Notes, 1998, Volume 64, Issue 4, Pages 476–482
DOI: https://doi.org/10.1007/BF02314628
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: B. A. Kats, “Integration over a fractal curve and the jump problem”, Mat. Zametki, 64:4 (1998), 549–557; Math. Notes, 64:4 (1998), 476–482
Citation in format AMSBIB
\Bibitem{Kat98}
\by B.~A.~Kats
\paper Integration over a fractal curve and the jump problem
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 4
\pages 549--557
\mathnet{http://mi.mathnet.ru/mzm1429}
\crossref{https://doi.org/10.4213/mzm1429}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1687224}
\zmath{https://zbmath.org/?q=an:0936.30028}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 4
\pages 476--482
\crossref{https://doi.org/10.1007/BF02314628}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079258700027}
Linking options:
  • https://www.mathnet.ru/eng/mzm1429
  • https://doi.org/10.4213/mzm1429
  • https://www.mathnet.ru/eng/mzm/v64/i4/p549
  • This publication is cited in the following 10 articles:
    1. Ilya Boykov, Vladimir Roudnev, Alla Boykova, “Regular, Singular and Hypersingular Integrals over Fractal Contours”, Mathematics, 11:23 (2023), 4752  crossref
    2. Kats B.A., Katz D.B., “Curvilinear Integrals of Discontinuous Functions Over Nonrectifiable Paths and Riemann Boundary-Value Problem”, Math. Meth. Appl. Sci., 42:6 (2019), 1795–1803  crossref  isi  scopus
    3. Guseynov Y., “Integrable boundaries and fractals for H?lder classes; the Gauss?Green theorem”, Calc. Var. Partial Differ. Equ., 55:4 (2016), 103  crossref  mathscinet  zmath  isi  elib  scopus
    4. Boris A. Kats, Recent Progress in Operator Theory and Its Applications, 2012, 137  crossref
    5. B. A. Kats, “Metric dimensions, generalized integrations, cauchy transform, and riemann boundary-value problem on nonrectifiable arcs”, Journal of Mathematical Sciences, 189:1 (2013), 113–131  mathnet  mathnet  crossref
    6. Abreu-Blaya, R, “A jump problem for beta-analytic functions in domains with fractal boundaries”, Revista Matematica Complutense, 23:1 (2010), 105  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    7. Kats B.A., “The Cauchy Integral Over Non-Rectifiable Paths”, Complex Analysis and Dynamical Systems III, Contemporary Mathematics Series, 455, eds. Agranovsky M., Bshouty D., Karp L., Reich S., Shoikhet D., Zalcman L., Amer Mathematical Soc, 2008, 183–196  crossref  mathscinet  zmath  isi
    8. Abreu-Blaya R., Bory-Reyes J., Pena-Pena D., “Jump problem and removable singularities for monogenic functions”, Journal of Geometric Analysis, 17:1 (2007), 1–13  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Ricardo Abreu-Blaya, Juan Bory-Reyes, Dixan Peña-Peña, “Jump problem and removable singularities for monogenic functions”, J Geom Anal, 17:1 (2007)  crossref
    10. B. A. Kats, “The Stieltjes integral along a fractal contour and some of its applications”, Russian Math. (Iz. VUZ), 44:10 (2000), 19–29  mathnet  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:458
    Full-text PDF :214
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025