Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 3, Pages 343–349
DOI: https://doi.org/10.4213/mzm10516
(Mi mzm10516)
 

This article is cited in 17 scientific papers (total in 17 papers)

Embedding of Sobolev Spaces and Properties of the Domain

O. V. Besov

Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: We establish the embedding of the Sobolev space Wps(G)Lq(G) for an irregular domain G in the case of a limit exponent under new relations between the parameters depending on the geometric properties of the domain G.
Keywords: Sobolev space, Sobolev embedding theorem, domain with flexible σ-cone condition, Hölder's inequality, Marcinkiewicz interpolation theorem.
Received: 07.04.2014
English version:
Mathematical Notes, 2014, Volume 96, Issue 3, Pages 326–331
DOI: https://doi.org/10.1134/S0001434614090041
Bibliographic databases:
Document Type: Article
UDC: 517.982.256
Language: Russian
Citation: O. V. Besov, “Embedding of Sobolev Spaces and Properties of the Domain”, Mat. Zametki, 96:3 (2014), 343–349; Math. Notes, 96:3 (2014), 326–331
Citation in format AMSBIB
\Bibitem{Bes14}
\by O.~V.~Besov
\paper Embedding of Sobolev Spaces and Properties of the Domain
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 3
\pages 343--349
\mathnet{http://mi.mathnet.ru/mzm10516}
\crossref{https://doi.org/10.4213/mzm10516}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1687236}
\zmath{https://zbmath.org/?q=an:06434995}
\elib{https://elibrary.ru/item.asp?id=22834399}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 3
\pages 326--331
\crossref{https://doi.org/10.1134/S0001434614090041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344334500004}
\elib{https://elibrary.ru/item.asp?id=24945909}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920832954}
Linking options:
  • https://www.mathnet.ru/eng/mzm10516
  • https://doi.org/10.4213/mzm10516
  • https://www.mathnet.ru/eng/mzm/v96/i3/p343
  • This publication is cited in the following 17 articles:
    1. O. V. Besov, “Embeddings of Spaces of Functions of Positive Smoothness on a Hölder Domain in Lebesgue Spaces”, Math. Notes, 113:1 (2023), 18–26  mathnet  crossref  crossref  mathscinet
    2. O. V. Besov, “Integral Representations and Embeddings of Spaces of Functions of Positive Smoothness on a Hölder Domain”, Proc. Steklov Inst. Math., 323 (2023), 47–58  mathnet  crossref  crossref
    3. Jiri Vala, Vladislav Kozak, Petra Jarosova, “On a Computational Approach to Micro- and Macro-modelling of Damage in Brittle and Quasi-brittle Materials”, International Journal of Mechanics, 14 (2020), 185  crossref
    4. O. V. Besov, “Embeddings of spaces of functions of positive smoothness on irregular domains”, Dokl. Math., 99:1 (2019), 31–35  crossref  mathscinet  isi
    5. O. V. Besov, “Embeddings of Spaces of Functions of Positive Smoothness on Irregular Domains”, Math. Notes, 106:4 (2019), 501–513  mathnet  crossref  crossref  mathscinet  isi  elib
    6. O. V. Besov, “Embeddings for weighted spaces of functions of positive smoothness on irregular domains into Lebesgue spaces”, Dokl. Math., 97:3 (2018), 236–239  mathnet  crossref  crossref  mathscinet  mathscinet  zmath  isi  elib  scopus
    7. O. V. Besov, “Embeddings of Spaces of Functions of Positive Smoothness on Irregular Domains in Lebesgue Spaces”, Math. Notes, 103:3 (2018), 348–356  mathnet  crossref  crossref  mathscinet  isi  elib
    8. O. V. Besov, “Embeddings of Weighted Spaces of Functions of Positive Smoothness on Irregular Domains in Lebesgue Space”, Math. Notes, 104:6 (2018), 799–809  mathnet  crossref  crossref  mathscinet  isi  elib
    9. O. V. Besov, “Another Note on the Embedding of the Sobolev Space for the Limiting Exponent”, Math. Notes, 101:4 (2017), 608–618  mathnet  crossref  crossref  mathscinet  isi  elib
    10. E. I. Berezhnoi, V. V. Kocherova, A. A. Perfilyev, “Notes for Trudinger-Moser inequality”, International Conference Functional Analysis In Interdisciplinary Applications (FAIA 2017), AIP Conference Proceedings, 1880, eds. T. Kalmenov, M. Sadybekov, Amer Inst Physics, 2017, UNSP 030009  crossref  isi  scopus
    11. O. V. Besov, “Spaces of functions of positive smoothness on irregular domains”, Proc. Steklov Inst. Math., 293 (2016), 56–66  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    12. D. V. Prokhorov, “On a Set Everywhere Dense in a Lebesgue Space on the Real Line”, Math. Notes, 100:4 (2016), 639–641  mathnet  crossref  crossref  mathscinet  isi  elib
    13. O. V. Besov, “Embedding of Sobolev spaces with limit exponent revisited”, Dokl. Math., 94:3 (2016), 684–687  mathnet  crossref  mathscinet  zmath  isi  scopus
    14. O. V. Besov, “Spaces of functions of positive smoothness on irregular domains”, Dokl. Math., 93:1 (2016), 13–15  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
    15. O. V. Besov, “Embedding of a weighted Sobolev space and properties of the domain”, Proc. Steklov Inst. Math., 289 (2015), 96–103  mathnet  crossref  crossref  isi  elib
    16. V. D. Stepanov, “On Optimal Banach Spaces Containing a Weight Cone of Monotone or Quasiconcave Functions”, Math. Notes, 98:6 (2015), 957–970  mathnet  crossref  crossref  mathscinet  isi  elib
    17. O. V. Besov, “Embedding of a weighted Sobolev space and properties of the domain”, Dokl. Math., 90:3 (2014), 754–757  mathnet  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:699
    Full-text PDF :318
    References:92
    First page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025