Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 3, Pages 350–360
DOI: https://doi.org/10.4213/mzm10311
(Mi mzm10311)
 

This article is cited in 24 scientific papers (total in 24 papers)

On Normal τ-Measurable Operators Affiliated with Semifinite Von Neumann Algebras

A. M. Bikchentaev

Kazan (Volga Region) Federal University
References:
Abstract: Let τ be a faithful normal semifinite trace on the von Neumann algebra M, 1q>0. The following generalizations of problems 163 and 139 from the book [1] to τ-measurable operators are obtained; it is established that: 1) each τ-compact q-hyponormal operator is normal; 2) if a τ-measurable operator A is normal and, for some natural number n, the operator An is τ-compact, then the operator A is also τ-compact. It is proved that if a τ-measurable operator A is hyponormal and the operator A2 is τ-compact, then the operator A is also τ-compact. A new property of a nonincreasing rearrangement of the product of hyponormal and cohyponormal τ-measurable operators is established. For normal τ-measurable operators A and B, it is shown that the nonincreasing rearrangements of the operators AB and BA coincide. Applications of the results obtained to F-normed symmetric spaces on (M,τ) are considered.
Keywords: semifinite von Neumann algebra, faithful normal semifinite trace, τ-measurable operator, hyponormal operator, cohyponormal operator, τ-compact operator, nilpotent, quasinilpotent, F-normed symmetric space.
Received: 27.05.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 3, Pages 332–341
DOI: https://doi.org/10.1134/S0001434614090053
Bibliographic databases:
Document Type: Article
UDC: 517.983+517.986
Language: Russian
Citation: A. M. Bikchentaev, “On Normal τ-Measurable Operators Affiliated with Semifinite Von Neumann Algebras”, Mat. Zametki, 96:3 (2014), 350–360; Math. Notes, 96:3 (2014), 332–341
Citation in format AMSBIB
\Bibitem{Bik14}
\by A.~M.~Bikchentaev
\paper On Normal $\tau$-Measurable Operators Affiliated with Semifinite Von Neumann Algebras
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 3
\pages 350--360
\mathnet{http://mi.mathnet.ru/mzm10311}
\crossref{https://doi.org/10.4213/mzm10311}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344307}
\zmath{https://zbmath.org/?q=an:06434996}
\elib{https://elibrary.ru/item.asp?id=22834400}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 3
\pages 332--341
\crossref{https://doi.org/10.1134/S0001434614090053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344334500005}
\elib{https://elibrary.ru/item.asp?id=24945924}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920917074}
Linking options:
  • https://www.mathnet.ru/eng/mzm10311
  • https://doi.org/10.4213/mzm10311
  • https://www.mathnet.ru/eng/mzm/v96/i3/p350
  • This publication is cited in the following 24 articles:
    1. A. M. Bikchentaev, “Neravenstva dlya sleda i izmerimykh operatorov, prisoedinennykh k algebre fon Neimana”, Izv. vuzov. Matem., 2025, no. 1, 99–104  mathnet  crossref
    2. A. M. Bikchentaev, “Trace Inequalities for Measurable Operators Affiliated to a von Neumann Algebra”, Russ Math., 69:1 (2025), 90  crossref
    3. Airat Bikchentaev, “Hyponormal measurable operators, affiliated to a semifinite von Neumann algebra”, Adv. Oper. Theory, 9:4 (2024)  crossref
    4. A. M. Bikchentaev, “Concerning the Theory of $\boldsymbol{\tau}$-Measurable Operators Affiliated to a Semifinite von Neumann Algebra. II”, Lobachevskii J Math, 44:10 (2023), 4507  crossref
    5. Airat BİKCHENTAEV, “The algebra of thin measurable operators is directly finite”, Constructive Mathematical Analysis, 6:1 (2023), 1  crossref
    6. Bikchentaev A.M. Sherstnev A.N., “Studies on Noncommutative Measure Theory in Kazan University (1968-2018)”, Int. J. Theor. Phys., 60:2, SI (2021), 585–596  crossref  mathscinet  isi
    7. Bikchentaev A., “Paranormal Measurable Operators Affiliated With a Semifinite Von Neumann Algebra. II”, Positivity, 24:5 (2020), 1487–1501  crossref  mathscinet  isi
    8. A. M. Bikchentaev, “Rearrangements of tripotents and differences of isometries in semifinite von Neumann algebras”, Lobachevskii J. Math., 40:10, SI (2019), 1450–1454  crossref  mathscinet  isi
    9. A. M. Bikchentaev, “Paranormal measurable operators affiliated with a semifinite von Neumann algebra”, Lobachevskii J. Math., 39:6 (2018), 731–741  crossref  mathscinet  isi  scopus
    10. A. M. Bikchentaev, S. A. Abed, “Paranormal elements in normed algebra”, Russian Math. (Iz. VUZ), 62:5 (2018), 10–15  mathnet  crossref  isi
    11. A. M. Bikchentaev, “Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra”, Siberian Math. J., 59:2 (2018), 243–251  mathnet  crossref  crossref  isi  elib
    12. A. M. Bikchentaev, “On an analog of the M. G. Krein theorem for measurable operators”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 160, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2018, 243–249  mathnet
    13. A. M. Bikchentaev, “Two classes of $\tau$-measurable operators affiliated with a von Neumann algebra”, Russian Math. (Iz. VUZ), 61:1 (2017), 76–80  mathnet  crossref  isi
    14. A. M. Bikchentaev, “On $\tau$-compactness of products of $\tau$-measurable operators”, Int. J. Theor. Phys., 56:12 (2017), 3819–3830  crossref  mathscinet  zmath  isi  scopus
    15. Ya. Han, “Submajorization and $p$-norm inequalities associated with $\tau$-measurable operators”, Linear Multilinear Algebra, 65:11 (2017), 2199–2211  crossref  mathscinet  zmath  isi  scopus
    16. A. M. Bikchentaev, “On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras”, J. Math. Sci. (N. Y.), 241:4 (2019), 458–468  mathnet  mathnet  crossref
    17. A. M. Bikchentaev, “On operator monotone and operator convex functions”, Russian Math. (Iz. VUZ), 60:5 (2016), 61–65  mathnet  crossref  isi
    18. A. M. Bikchentaev, “Convergence of integrable operators affiliated to a finite von Neumann algebra”, Proc. Steklov Inst. Math., 293 (2016), 67–76  mathnet  crossref  crossref  mathscinet  isi  elib
    19. A. M. Bikchentaev, “On Idempotent $\tau$-Measurable Operators Affiliated to a von Neumann Algebra”, Math. Notes, 100:4 (2016), 515–525  mathnet  crossref  crossref  mathscinet  isi  elib
    20. Ya. Han, “On the Araki–Lieb–Thirring inequality in the semifinite von Neumann algebra”, Ann. Funct. Anal., 7:4 (2016), 622–635  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:807
    Full-text PDF :508
    References:234
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025