Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 3, Pages 333–342
DOI: https://doi.org/10.4213/mzm10515
(Mi mzm10515)
 

On the Uniform Convergence of Solutions of Volterra-Type Controlled Systems of Integral Equations Linear in the Control

Yu. I. Beloglazov, A. V. Dmitruk

M. V. Lomonosov Moscow State University
References:
Abstract: For systems of integral equations with properties cited in the title, we propose a constraint on the convergence of the controls guaranteeing the uniform convergence of the solutions of such systems. This requirement is weaker than weak convergence. Relevant examples are given.
Keywords: Volterra-type controlled system, uniform convergence, weak convergence, Lipschitz operator, modulus of continuity.
Received: 21.09.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 3, Pages 317–325
DOI: https://doi.org/10.1134/S000143461409003X
Bibliographic databases:
Document Type: Article
UDC: 517.968.22
Language: Russian
Citation: Yu. I. Beloglazov, A. V. Dmitruk, “On the Uniform Convergence of Solutions of Volterra-Type Controlled Systems of Integral Equations Linear in the Control”, Mat. Zametki, 96:3 (2014), 333–342; Math. Notes, 96:3 (2014), 317–325
Citation in format AMSBIB
\Bibitem{BelDmi14}
\by Yu.~I.~Beloglazov, A.~V.~Dmitruk
\paper On the Uniform Convergence of Solutions of Volterra-Type Controlled Systems of Integral Equations Linear in the Control
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 3
\pages 333--342
\mathnet{http://mi.mathnet.ru/mzm10515}
\crossref{https://doi.org/10.4213/mzm10515}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344305}
\zmath{https://zbmath.org/?q=an:1310.93045}
\elib{https://elibrary.ru/item.asp?id=22834398}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 3
\pages 317--325
\crossref{https://doi.org/10.1134/S000143461409003X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344334500003}
\elib{https://elibrary.ru/item.asp?id=24956560}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948126610}
Linking options:
  • https://www.mathnet.ru/eng/mzm10515
  • https://doi.org/10.4213/mzm10515
  • https://www.mathnet.ru/eng/mzm/v96/i3/p333
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024