Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 3, Pages 440–449
DOI: https://doi.org/10.4213/mzm10344
(Mi mzm10344)
 

This article is cited in 1 scientific paper (total in 1 paper)

Boundary-Value Problems for a Nonlinear Hyperbolic Equation with Variable Coefficients and the Lévy Laplacian

M. N. Feller
Full-text PDF (493 kB) Citations (1)
References:
Abstract: For a nonlinear hyperbolic equation with variable coefficients and the infinite-dimensional Lévy Laplacian $\Delta _L$,
$$ \beta\biggl(\sqrt{2}\mspace{2mu}\|x\|_H \frac{\partial U(t,x)}{\partial t}\biggr) \frac{\partial^2U(t,x)}{\partial t^2} +\alpha(U(t,x)) \biggl[\frac{\partial U(t,x)}{\partial t}\biggr]^2 =\Delta_LU(t,x), $$
we present algorithms for the solution of the boundary-value problem $U(0,x)=u_0$, $U(t,0)=u_1$ and the exterior boundary-value problem $U(0,x)=v_0$, $U(t,x)|_\Gamma=v_1$, $\lim_{\|x\|_H\to\infty}U(t,x)=v_2$ for the class of Shilov functions depending on the parameter $t$.
Keywords: nonlinear hyperbolic equation, boundary-value problem, Lévy Laplacian, Shilov function, Hilbert space.
Received: 22.06.2013
Revised: 14.10.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 3, Pages 423–431
DOI: https://doi.org/10.1134/S0001434614090144
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. N. Feller, “Boundary-Value Problems for a Nonlinear Hyperbolic Equation with Variable Coefficients and the Lévy Laplacian”, Mat. Zametki, 96:3 (2014), 440–449; Math. Notes, 96:3 (2014), 423–431
Citation in format AMSBIB
\Bibitem{Fel14}
\by M.~N.~Feller
\paper Boundary-Value Problems for a Nonlinear Hyperbolic Equation with Variable Coefficients and the L\'evy Laplacian
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 3
\pages 440--449
\mathnet{http://mi.mathnet.ru/mzm10344}
\crossref{https://doi.org/10.4213/mzm10344}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344316}
\zmath{https://zbmath.org/?q=an:06435005}
\elib{https://elibrary.ru/item.asp?id=22834408}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 3
\pages 423--431
\crossref{https://doi.org/10.1134/S0001434614090144}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344334500014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920882347}
Linking options:
  • https://www.mathnet.ru/eng/mzm10344
  • https://doi.org/10.4213/mzm10344
  • https://www.mathnet.ru/eng/mzm/v96/i3/p440
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024