Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 3, Pages 450–469
DOI: https://doi.org/10.4213/mzm10140
(Mi mzm10140)
 

This article is cited in 2 scientific papers (total in 2 papers)

Tensor Products and Multipliers of Modules $L_p$ on Locally Compact Measure Spaces

A. Ya. Khelemskii

M. V. Lomonosov Moscow State University
Full-text PDF (577 kB) Citations (2)
References:
Abstract: Projective module tensor products and spaces of multipliers (i.e., bounded module morphisms) of the spaces $L_p(\mu)$ and $L_q(\nu)$ regarded as modules over the algebras $C_0(\Omega)$ and $B(\Omega)$ on a locally compact space $\Omega$ are described. Here $B(\Omega)$ consists of bounded Borel functions on $\Omega$, $\mu$ and $\nu$ are regular Borel measures on $\Omega$, $1\le p,q\le\infty$ in the case of the base algebra $B(\Omega)$, and $1\le p,q<\infty$ in the case of the base algebra $C_0(\Omega)$. (Loosely speaking, both the tensor product and the space of multipliers turn out to be yet other modules, which consist of integrable functions and correspond to their own subscripts on $L$ and measures). It is proved and used as an auxiliary tool that, in the case $p,q<\infty$ (and, generally, only in this case), the replacement of the base algebra $C_0(\Omega)$ by $B(\Omega)$ leaves the tensor products and multipliers intact.
Keywords: Banach module, module of class $L_p$, measure space, tensor product, space of multipliers, algebra of bounded Borel functions, outer product.
Received: 08.09.2012
Revised: 13.10.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 3, Pages 432–447
DOI: https://doi.org/10.1134/S0001434614090156
Bibliographic databases:
Document Type: Article
UDC: 517.986.22
Language: Russian
Citation: A. Ya. Khelemskii, “Tensor Products and Multipliers of Modules $L_p$ on Locally Compact Measure Spaces”, Mat. Zametki, 96:3 (2014), 450–469; Math. Notes, 96:3 (2014), 432–447
Citation in format AMSBIB
\Bibitem{Khe14}
\by A.~Ya.~Khelemskii
\paper Tensor Products and Multipliers of Modules $L_p$ on Locally Compact Measure Spaces
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 3
\pages 450--469
\mathnet{http://mi.mathnet.ru/mzm10140}
\crossref{https://doi.org/10.4213/mzm10140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344317}
\zmath{https://zbmath.org/?q=an:06435006}
\elib{https://elibrary.ru/item.asp?id=22834409}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 3
\pages 432--447
\crossref{https://doi.org/10.1134/S0001434614090156}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344334500015}
\elib{https://elibrary.ru/item.asp?id=24945927}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920921855}
Linking options:
  • https://www.mathnet.ru/eng/mzm10140
  • https://doi.org/10.4213/mzm10140
  • https://www.mathnet.ru/eng/mzm/v96/i3/p450
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024