Abstract:
The eigenvalue problem for the Laplacian with Dirichlet boundary conditions on a graph is considered. The main result is an estimate of the first (minimal) eigenvalue. The proof is based on the Schwartz symmetrization of a function on a graph and on its properties.
Keywords:
eigenvalue problem, Schwartz symmetrization, Laplacian on a graph.
Citation:
A. T. Diab, P. A. Kuleshov, O. M. Penkin, “Estimate of the First Eigenvalue of the Laplacian on a Graph”, Mat. Zametki, 96:6 (2014), 885–895; Math. Notes, 96:6 (2014), 948–956
\Bibitem{DiaKulPen14}
\by A.~T.~Diab, P.~A.~Kuleshov, O.~M.~Penkin
\paper Estimate of the First Eigenvalue of the Laplacian on a Graph
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 6
\pages 885--895
\mathnet{http://mi.mathnet.ru/mzm10268}
\crossref{https://doi.org/10.4213/mzm10268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343656}
\zmath{https://zbmath.org/?q=an:06435062}
\elib{https://elibrary.ru/item.asp?id=22834453}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 6
\pages 948--956
\crossref{https://doi.org/10.1134/S0001434614110327}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700032}
\elib{https://elibrary.ru/item.asp?id=24023094}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919916224}
Linking options:
https://www.mathnet.ru/eng/mzm10268
https://doi.org/10.4213/mzm10268
https://www.mathnet.ru/eng/mzm/v96/i6/p885
This publication is cited in the following 7 articles:
S. A. Karkuzaev, R. Ch. Kulaev, “Nizhnie otsenki veduschego sobstvennogo znacheniya laplasiana na grafe”, Matem. zametki, 117:2 (2025), 270–284
M. B. Zvereva, “A Model of String System Deformations on a Star Graph with Nonlinear Condition at the Node”, J Math Sci, 283:1 (2024), 76
R. Ch Kulaev, S. A Karkuzaev, “BOTTOM ESTIMATES FOR THE MINIMAL EIGENVALUE OF THE BI-LAPLACIAN ON A GRAPH”, Differencialʹnye uravneniâ, 60:8 (2024), 1034
R. Ch. Kulaev, S. A. Karkuzaev, “Lower Bounds for the Minimum Eigenvalue of the bi-Laplacian
on a Graph”, Diff Equat, 60:8 (2024), 1014
M. B. Zvereva, “Model deformatsii strunnoi sistemy na grafe-zvezde s nelineinym usloviem v uzle”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 68, no. 4, Rossiiskii universitet druzhby narodov, M., 2022, 635–652
M. Sh. Burlutskaya, “Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications”, Russian Math. (Iz. VUZ), 65:5 (2021), 69–76
A. A. Vladimirov, “Remarks on Minorants of Laplacians on a Geometric Graph”, Math. Notes, 98:3 (2015), 519–521